Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944138776> ?p ?o ?g. }
- W2944138776 endingPage "256" @default.
- W2944138776 startingPage "240" @default.
- W2944138776 abstract "The landscape-human relationships on the Alps, the more populated mountain region globally, depend on tree species diversity, their canopy height and canopy gaps (soil cover). The monitoring of such forest information plays an important role in forest management planning and therefore in the definition of present and future mountain forest services. In order to gain wide scale and high-resolution forest information, very high-resolution (VHR) stereo satellite imagery has the main benefit of covering large areas with short repetition intervals. However, the application of this technology is not fully assessed in terms of accuracy in dynamic year-around forest conditions. In this study, we investigate on four study sites in the Swiss Alps 1) the accuracy of forest metrics in the Alpine forests derived from VHR Pléiades satellite images and 2) the relation of associated errors with shadows, terrain aspect and slope, and forest characteristics. We outline a grid-based approach to derive the main forest metrics (descriptive statistics) from the canopy height models (CHMs) such as the maximum height (Hmax), height percentiles (Hp95, Hp50), the standard deviation of the height values (HStd) and canopy gaps. The Pléiades-based forest metrics are compared with those obtained by aerial image matching, a technology operationally used for deriving this information. For the study site with aerial and satellite images acquired almost at the same time, this comparison shows that the medians of Pléiades forest metrics error are -0.25 m (Hmax), 0.33 m (Hp95), −0.03 m (HStd) and -5.6% for the canopy gaps. The highest correlation (R2 = 0.74) between Pléiades and aerial canopy gaps is found for very bright areas. Conversely, in shadowed forested areas a R2 of only 0.16 is obtained. In forested areas with steep terrain (>50°), Pléiades forest metrics show high variance for all the study areas. Concerning the canopy gaps in these areas, the correlation between Pléiades and the reference data provides a correlation value of R2 = 0.20, whereas R2 increases to 0.66 for gently sloped areas (10-20°). The aspect does not provide a significant correlation with the accuracy of the Pléiades forest metrics. However, the extended shadowed mainly on north/northwest facing slopes caused by trees or terrain shade negatively affect the performance of stereo dense image matching, and hence the forests metrics. The occurrence of strong shadows in the forested areas increases dramatically by ˜40% in the winter season due to the lower sun elevation. Furthermore, due to the leaf-off condition in the winter season dense image matching may fail to derive the canopy heights. Our results show that Pléiades CHMs could be a useful alternative to CHMs based on aerial images matching for monitoring forest metrics and canopy gaps in mountain forests if captured during leaf-on conditions. Our study offers forest research, as well as forest management planning, the benefit of a better understanding of the performance of VHR satellite imagery used for forest inventory in mountainous regions and in similar forest environments." @default.
- W2944138776 created "2019-05-16" @default.
- W2944138776 creator A5006786717 @default.
- W2944138776 creator A5006891946 @default.
- W2944138776 creator A5017645389 @default.
- W2944138776 creator A5024904329 @default.
- W2944138776 creator A5027450737 @default.
- W2944138776 creator A5047318229 @default.
- W2944138776 creator A5081275712 @default.
- W2944138776 date "2019-08-01" @default.
- W2944138776 modified "2023-10-07" @default.
- W2944138776 title "Pléiades satellite images for deriving forest metrics in the Alpine region" @default.
- W2944138776 cites W1939619463 @default.
- W2944138776 cites W1942861091 @default.
- W2944138776 cites W1946682121 @default.
- W2944138776 cites W1975196255 @default.
- W2944138776 cites W1988736167 @default.
- W2944138776 cites W1991439152 @default.
- W2944138776 cites W1998222021 @default.
- W2944138776 cites W1999601230 @default.
- W2944138776 cites W2001323817 @default.
- W2944138776 cites W2005885990 @default.
- W2944138776 cites W2015598292 @default.
- W2944138776 cites W2016506418 @default.
- W2944138776 cites W2019549520 @default.
- W2944138776 cites W2028758295 @default.
- W2944138776 cites W2072708786 @default.
- W2944138776 cites W2089648522 @default.
- W2944138776 cites W2091688953 @default.
- W2944138776 cites W2091939427 @default.
- W2944138776 cites W2108891443 @default.
- W2944138776 cites W2120540846 @default.
- W2944138776 cites W2130464813 @default.
- W2944138776 cites W2133160971 @default.
- W2944138776 cites W2159352923 @default.
- W2944138776 cites W2175271311 @default.
- W2944138776 cites W2180526376 @default.
- W2944138776 cites W2266591399 @default.
- W2944138776 cites W2278896834 @default.
- W2944138776 cites W2284979566 @default.
- W2944138776 cites W2395179641 @default.
- W2944138776 cites W2408023307 @default.
- W2944138776 cites W2482464033 @default.
- W2944138776 cites W2507823894 @default.
- W2944138776 cites W2512156656 @default.
- W2944138776 cites W2515306179 @default.
- W2944138776 cites W2585356374 @default.
- W2944138776 cites W2606424434 @default.
- W2944138776 cites W2787760587 @default.
- W2944138776 cites W2808997086 @default.
- W2944138776 cites W2886324179 @default.
- W2944138776 cites W2893568594 @default.
- W2944138776 cites W2896206172 @default.
- W2944138776 cites W2913069650 @default.
- W2944138776 cites W2923431490 @default.
- W2944138776 doi "https://doi.org/10.1016/j.jag.2019.04.008" @default.
- W2944138776 hasPublicationYear "2019" @default.
- W2944138776 type Work @default.
- W2944138776 sameAs 2944138776 @default.
- W2944138776 citedByCount "8" @default.
- W2944138776 countsByYear W29441387762019 @default.
- W2944138776 countsByYear W29441387762020 @default.
- W2944138776 countsByYear W29441387762021 @default.
- W2944138776 countsByYear W29441387762022 @default.
- W2944138776 countsByYear W29441387762023 @default.
- W2944138776 crossrefType "journal-article" @default.
- W2944138776 hasAuthorship W2944138776A5006786717 @default.
- W2944138776 hasAuthorship W2944138776A5006891946 @default.
- W2944138776 hasAuthorship W2944138776A5017645389 @default.
- W2944138776 hasAuthorship W2944138776A5024904329 @default.
- W2944138776 hasAuthorship W2944138776A5027450737 @default.
- W2944138776 hasAuthorship W2944138776A5047318229 @default.
- W2944138776 hasAuthorship W2944138776A5081275712 @default.
- W2944138776 hasConcept C101000010 @default.
- W2944138776 hasConcept C127413603 @default.
- W2944138776 hasConcept C146978453 @default.
- W2944138776 hasConcept C147103442 @default.
- W2944138776 hasConcept C161840515 @default.
- W2944138776 hasConcept C166957645 @default.
- W2944138776 hasConcept C19269812 @default.
- W2944138776 hasConcept C205649164 @default.
- W2944138776 hasConcept C2778102629 @default.
- W2944138776 hasConcept C2778755073 @default.
- W2944138776 hasConcept C28631016 @default.
- W2944138776 hasConcept C39432304 @default.
- W2944138776 hasConcept C39807119 @default.
- W2944138776 hasConcept C58640448 @default.
- W2944138776 hasConcept C62649853 @default.
- W2944138776 hasConcept C97137747 @default.
- W2944138776 hasConceptScore W2944138776C101000010 @default.
- W2944138776 hasConceptScore W2944138776C127413603 @default.
- W2944138776 hasConceptScore W2944138776C146978453 @default.
- W2944138776 hasConceptScore W2944138776C147103442 @default.
- W2944138776 hasConceptScore W2944138776C161840515 @default.
- W2944138776 hasConceptScore W2944138776C166957645 @default.
- W2944138776 hasConceptScore W2944138776C19269812 @default.
- W2944138776 hasConceptScore W2944138776C205649164 @default.
- W2944138776 hasConceptScore W2944138776C2778102629 @default.