Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944156738> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2944156738 endingPage "745" @default.
- W2944156738 startingPage "741" @default.
- W2944156738 abstract "The sustainability issues have become increasingly critical due to the limited capacity of the environment and non-renewable natural resources. Manufacturing, as the main foundation of human society and civilization, plays a significant role in sustainability. As a new production approach, additive manufacturing fabricates products layer-by-layer. and has become a promising alternative to traditional subtractive manufacturing. Nevertheless, the sustainability performance of additive manufacturing has not been sufficiently estimated and evaluated. In current literature, the majority of the energy consumption studies on additive manufacturing aim to establish the relationships between process parameters and power consumption. While these studies can facilitate the joint consideration of process planning and environmental sustainability, they fail to relate the product geometry with the sustainability performance, and therefore lack predictive ability. Hence, they cannot be directly used to support product design and redesign. In addition, bridging the product geometry with the required power consumption can aid the establishment of the life cycle inventory database for additive manufacturing processes. In this paper, a new machine learning-based approach is adopted to extract the geometry-related features in order to estimate and predict the energy consumption of mask image projection stereolithography process. By bridging the product geometry and process energy consumption, the research outcomes will serve as a critical part of the unit manufacturing process models and contribute to the life cycle inventory of additive manufacturing." @default.
- W2944156738 created "2019-05-16" @default.
- W2944156738 creator A5011064187 @default.
- W2944156738 creator A5026803852 @default.
- W2944156738 creator A5058965019 @default.
- W2944156738 date "2019-01-01" @default.
- W2944156738 modified "2023-10-04" @default.
- W2944156738 title "A new machine learning based geometry feature extraction approach for energy consumption estimation in mask image projection stereolithography" @default.
- W2944156738 cites W1965246169 @default.
- W2944156738 cites W1973453703 @default.
- W2944156738 cites W1984700330 @default.
- W2944156738 cites W1996251002 @default.
- W2944156738 cites W2000461068 @default.
- W2944156738 cites W2013039010 @default.
- W2944156738 cites W2024983996 @default.
- W2944156738 cites W2031946327 @default.
- W2944156738 cites W2036828531 @default.
- W2944156738 cites W2067669023 @default.
- W2944156738 cites W2166683004 @default.
- W2944156738 cites W2588957617 @default.
- W2944156738 cites W2611535959 @default.
- W2944156738 cites W2759288234 @default.
- W2944156738 cites W2794464528 @default.
- W2944156738 cites W2803592840 @default.
- W2944156738 cites W2889668517 @default.
- W2944156738 cites W2905014489 @default.
- W2944156738 cites W342966621 @default.
- W2944156738 cites W877299181 @default.
- W2944156738 doi "https://doi.org/10.1016/j.procir.2019.01.012" @default.
- W2944156738 hasPublicationYear "2019" @default.
- W2944156738 type Work @default.
- W2944156738 sameAs 2944156738 @default.
- W2944156738 citedByCount "8" @default.
- W2944156738 countsByYear W29441567382020 @default.
- W2944156738 countsByYear W29441567382022 @default.
- W2944156738 countsByYear W29441567382023 @default.
- W2944156738 crossrefType "journal-article" @default.
- W2944156738 hasAuthorship W2944156738A5011064187 @default.
- W2944156738 hasAuthorship W2944156738A5026803852 @default.
- W2944156738 hasAuthorship W2944156738A5058965019 @default.
- W2944156738 hasBestOaLocation W29441567381 @default.
- W2944156738 hasConcept C117671659 @default.
- W2944156738 hasConcept C119599485 @default.
- W2944156738 hasConcept C127413603 @default.
- W2944156738 hasConcept C13736549 @default.
- W2944156738 hasConcept C18903297 @default.
- W2944156738 hasConcept C2779154291 @default.
- W2944156738 hasConcept C2780165032 @default.
- W2944156738 hasConcept C41008148 @default.
- W2944156738 hasConcept C66204764 @default.
- W2944156738 hasConcept C78519656 @default.
- W2944156738 hasConcept C86803240 @default.
- W2944156738 hasConceptScore W2944156738C117671659 @default.
- W2944156738 hasConceptScore W2944156738C119599485 @default.
- W2944156738 hasConceptScore W2944156738C127413603 @default.
- W2944156738 hasConceptScore W2944156738C13736549 @default.
- W2944156738 hasConceptScore W2944156738C18903297 @default.
- W2944156738 hasConceptScore W2944156738C2779154291 @default.
- W2944156738 hasConceptScore W2944156738C2780165032 @default.
- W2944156738 hasConceptScore W2944156738C41008148 @default.
- W2944156738 hasConceptScore W2944156738C66204764 @default.
- W2944156738 hasConceptScore W2944156738C78519656 @default.
- W2944156738 hasConceptScore W2944156738C86803240 @default.
- W2944156738 hasLocation W29441567381 @default.
- W2944156738 hasOpenAccess W2944156738 @default.
- W2944156738 hasPrimaryLocation W29441567381 @default.
- W2944156738 hasRelatedWork W1559055910 @default.
- W2944156738 hasRelatedWork W1978513812 @default.
- W2944156738 hasRelatedWork W1978958476 @default.
- W2944156738 hasRelatedWork W2350003772 @default.
- W2944156738 hasRelatedWork W2753356462 @default.
- W2944156738 hasRelatedWork W2899084033 @default.
- W2944156738 hasRelatedWork W2998525367 @default.
- W2944156738 hasRelatedWork W3186891889 @default.
- W2944156738 hasRelatedWork W3204952993 @default.
- W2944156738 hasRelatedWork W4308192018 @default.
- W2944156738 hasVolume "80" @default.
- W2944156738 isParatext "false" @default.
- W2944156738 isRetracted "false" @default.
- W2944156738 magId "2944156738" @default.
- W2944156738 workType "article" @default.