Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944228068> ?p ?o ?g. }
- W2944228068 endingPage "102923" @default.
- W2944228068 startingPage "102923" @default.
- W2944228068 abstract "The quality of green tea is conventionally tested by human sensory panel, who assign quality scores to different teas. In order to overcome the deficiency of sensory evaluation methods, near infrared (NIR) reflectance spectroscopy combined with nonlinear methods was used to evaluate the sensory quality of green tea in this study. Nonlinear dimension reduction methods such as Kernel Principal Component Analysis (KPCA), Sparse Principal Component Analysis (SPCA), and Local Tangent Space Alignment (LTSA) were used to reduce the dimension of the spectral data, and compared with linear dimension reduction methods such as Principal Component Analysis (PCA), Multidimensional Scaling (MDS). Relevance vector machine (RVM) as a nonlinear quantitative analysis method was performed comparatively to develop calibration models between the sensory scores of the sensory panels and objective determination (NIR spectra measurements), and compared with back-propagation artificial network and linear PLS model. Experiment results showed that the non-linear reduction algorithm LTSA could obtain better effect on spatial reduction dimensional for NIR spectral data of tea. And when the number K of the neighborhoods in LTSA was 15, the RMSECV of RVM model was the minimum. The performance of LTSA-RVM model was superior to the others when 8 intrinsic variables were used. In the prediction set, Rp, RMSEP and RPD were 0.963, 1.461 and 3.788, respectively. The absolute value of prediction error of all prediction samples in LTSA-RVM are below 3.0, which indicated that the sensory scores predicted by NIR were consistent with the scores by tea assessors. The results of recovery study were 98.42%–102.81% at 5 real tea samples and the relative error lower than 3%. The research demonstrates that NIR technology combined with nonlinear analysis methods can effectively estimate sensory quality of tea and also present a potential way for fast and effective determination of the sensory quality of green tea." @default.
- W2944228068 created "2019-05-16" @default.
- W2944228068 creator A5000119934 @default.
- W2944228068 creator A5014068004 @default.
- W2944228068 creator A5017023745 @default.
- W2944228068 creator A5031023000 @default.
- W2944228068 creator A5041001775 @default.
- W2944228068 creator A5057128346 @default.
- W2944228068 creator A5071168897 @default.
- W2944228068 creator A5073384080 @default.
- W2944228068 date "2019-07-01" @default.
- W2944228068 modified "2023-10-16" @default.
- W2944228068 title "Local tangent space alignment and relevance vector machine as nonlinear methods for estimating sensory quality of tea using NIR spectroscopy" @default.
- W2944228068 cites W1740585449 @default.
- W2944228068 cites W1793133328 @default.
- W2944228068 cites W1966548225 @default.
- W2944228068 cites W1974793568 @default.
- W2944228068 cites W1975900269 @default.
- W2944228068 cites W1997575533 @default.
- W2944228068 cites W2001804196 @default.
- W2944228068 cites W2002694644 @default.
- W2944228068 cites W2013051270 @default.
- W2944228068 cites W2053186076 @default.
- W2944228068 cites W2054230997 @default.
- W2944228068 cites W2062594268 @default.
- W2944228068 cites W2077525115 @default.
- W2944228068 cites W2089181682 @default.
- W2944228068 cites W2100812469 @default.
- W2944228068 cites W2105762439 @default.
- W2944228068 cites W2111146558 @default.
- W2944228068 cites W2114753850 @default.
- W2944228068 cites W2132608139 @default.
- W2944228068 cites W2151956453 @default.
- W2944228068 cites W2157410975 @default.
- W2944228068 cites W2234034056 @default.
- W2944228068 cites W2294131262 @default.
- W2944228068 cites W2320035791 @default.
- W2944228068 cites W2343474134 @default.
- W2944228068 cites W2524803401 @default.
- W2944228068 cites W2531288459 @default.
- W2944228068 cites W2582397543 @default.
- W2944228068 cites W2583899076 @default.
- W2944228068 cites W2592686753 @default.
- W2944228068 cites W2594636583 @default.
- W2944228068 cites W2617421244 @default.
- W2944228068 cites W2760325762 @default.
- W2944228068 cites W2768860186 @default.
- W2944228068 cites W2783624009 @default.
- W2944228068 cites W2808522220 @default.
- W2944228068 cites W2810826170 @default.
- W2944228068 cites W2885298866 @default.
- W2944228068 cites W2892188669 @default.
- W2944228068 doi "https://doi.org/10.1016/j.vibspec.2019.05.005" @default.
- W2944228068 hasPublicationYear "2019" @default.
- W2944228068 type Work @default.
- W2944228068 sameAs 2944228068 @default.
- W2944228068 citedByCount "20" @default.
- W2944228068 countsByYear W29442280682019 @default.
- W2944228068 countsByYear W29442280682020 @default.
- W2944228068 countsByYear W29442280682021 @default.
- W2944228068 countsByYear W29442280682022 @default.
- W2944228068 countsByYear W29442280682023 @default.
- W2944228068 crossrefType "journal-article" @default.
- W2944228068 hasAuthorship W2944228068A5000119934 @default.
- W2944228068 hasAuthorship W2944228068A5014068004 @default.
- W2944228068 hasAuthorship W2944228068A5017023745 @default.
- W2944228068 hasAuthorship W2944228068A5031023000 @default.
- W2944228068 hasAuthorship W2944228068A5041001775 @default.
- W2944228068 hasAuthorship W2944228068A5057128346 @default.
- W2944228068 hasAuthorship W2944228068A5071168897 @default.
- W2944228068 hasAuthorship W2944228068A5073384080 @default.
- W2944228068 hasConcept C105795698 @default.
- W2944228068 hasConcept C114614502 @default.
- W2944228068 hasConcept C120665830 @default.
- W2944228068 hasConcept C121332964 @default.
- W2944228068 hasConcept C122280245 @default.
- W2944228068 hasConcept C12267149 @default.
- W2944228068 hasConcept C14948415 @default.
- W2944228068 hasConcept C153180895 @default.
- W2944228068 hasConcept C154945302 @default.
- W2944228068 hasConcept C165838908 @default.
- W2944228068 hasConcept C169760540 @default.
- W2944228068 hasConcept C182335926 @default.
- W2944228068 hasConcept C186060115 @default.
- W2944228068 hasConcept C27438332 @default.
- W2944228068 hasConcept C33923547 @default.
- W2944228068 hasConcept C41008148 @default.
- W2944228068 hasConcept C43571822 @default.
- W2944228068 hasConcept C70518039 @default.
- W2944228068 hasConcept C74193536 @default.
- W2944228068 hasConcept C86803240 @default.
- W2944228068 hasConcept C94487597 @default.
- W2944228068 hasConceptScore W2944228068C105795698 @default.
- W2944228068 hasConceptScore W2944228068C114614502 @default.
- W2944228068 hasConceptScore W2944228068C120665830 @default.
- W2944228068 hasConceptScore W2944228068C121332964 @default.
- W2944228068 hasConceptScore W2944228068C122280245 @default.
- W2944228068 hasConceptScore W2944228068C12267149 @default.