Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944238254> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2944238254 abstract "Short-term load forecasting plays a preponderant role in the daily basis system’s operation and planning. The state- of-the-art comprises a far-reaching set of methodologies, which are traditionally based on time-series analysis and multilayer neural networks. In particular, the existence of countless neural network architectures has highlighted its ability to cope with hard nonlinear approximation tasks, thus making them appropriate to perform load forecasts. Following this successful path, long short-term memory networks were employed in an optimized arrangement as forecasters, this type of recurrent neural networks has received in recent years a renewed interest for machine learning tasks. Firstly, a preprocessing stage takes place, where through the selection of similar days and correlation analysis, meaningful statistics and characteristics are extracted from the load time-series, to assemble the proper training sets. Then, Bat Algorithm is used to excel the long short-term memory network functioning, by fine-tuning its size and its learning hyperparameters. Numerical testing conducted on the Portuguese load time-series reveals promising forecasting results in an overall assessment, when compared with other state-of-the-art methods." @default.
- W2944238254 created "2019-05-16" @default.
- W2944238254 creator A5032113318 @default.
- W2944238254 creator A5041263245 @default.
- W2944238254 creator A5058940908 @default.
- W2944238254 creator A5066951981 @default.
- W2944238254 date "2018-09-01" @default.
- W2944238254 modified "2023-09-27" @default.
- W2944238254 title "Short-Term Load Forecasting using optimized LSTM Networks via Improved Bat Algorithm" @default.
- W2944238254 cites W1492251973 @default.
- W2944238254 cites W1901617369 @default.
- W2944238254 cites W1987498744 @default.
- W2944238254 cites W1997746543 @default.
- W2944238254 cites W2006706382 @default.
- W2944238254 cites W2039346833 @default.
- W2944238254 cites W2045256105 @default.
- W2944238254 cites W2076063813 @default.
- W2944238254 cites W2088357067 @default.
- W2944238254 cites W2095731600 @default.
- W2944238254 cites W2122530359 @default.
- W2944238254 cites W2153848144 @default.
- W2944238254 cites W2154071492 @default.
- W2944238254 cites W2160612737 @default.
- W2944238254 cites W2171985965 @default.
- W2944238254 cites W2193660226 @default.
- W2944238254 cites W2292129691 @default.
- W2944238254 cites W2294761750 @default.
- W2944238254 cites W2313912006 @default.
- W2944238254 cites W2419323017 @default.
- W2944238254 cites W2513528500 @default.
- W2944238254 cites W2515245443 @default.
- W2944238254 cites W2534867807 @default.
- W2944238254 cites W2561043568 @default.
- W2944238254 cites W2593505840 @default.
- W2944238254 cites W2610635404 @default.
- W2944238254 cites W2617137613 @default.
- W2944238254 cites W2743882817 @default.
- W2944238254 cites W2765791163 @default.
- W2944238254 cites W2772858445 @default.
- W2944238254 cites W2807132407 @default.
- W2944238254 cites W977807926 @default.
- W2944238254 doi "https://doi.org/10.1109/is.2018.8710498" @default.
- W2944238254 hasPublicationYear "2018" @default.
- W2944238254 type Work @default.
- W2944238254 sameAs 2944238254 @default.
- W2944238254 citedByCount "9" @default.
- W2944238254 countsByYear W29442382542020 @default.
- W2944238254 countsByYear W29442382542021 @default.
- W2944238254 countsByYear W29442382542022 @default.
- W2944238254 countsByYear W29442382542023 @default.
- W2944238254 crossrefType "proceedings-article" @default.
- W2944238254 hasAuthorship W2944238254A5032113318 @default.
- W2944238254 hasAuthorship W2944238254A5041263245 @default.
- W2944238254 hasAuthorship W2944238254A5058940908 @default.
- W2944238254 hasAuthorship W2944238254A5066951981 @default.
- W2944238254 hasConcept C106516650 @default.
- W2944238254 hasConcept C11413529 @default.
- W2944238254 hasConcept C121332964 @default.
- W2944238254 hasConcept C154945302 @default.
- W2944238254 hasConcept C41008148 @default.
- W2944238254 hasConcept C61797465 @default.
- W2944238254 hasConcept C62520636 @default.
- W2944238254 hasConceptScore W2944238254C106516650 @default.
- W2944238254 hasConceptScore W2944238254C11413529 @default.
- W2944238254 hasConceptScore W2944238254C121332964 @default.
- W2944238254 hasConceptScore W2944238254C154945302 @default.
- W2944238254 hasConceptScore W2944238254C41008148 @default.
- W2944238254 hasConceptScore W2944238254C61797465 @default.
- W2944238254 hasConceptScore W2944238254C62520636 @default.
- W2944238254 hasLocation W29442382541 @default.
- W2944238254 hasOpenAccess W2944238254 @default.
- W2944238254 hasPrimaryLocation W29442382541 @default.
- W2944238254 hasRelatedWork W2117183908 @default.
- W2944238254 hasRelatedWork W2333698505 @default.
- W2944238254 hasRelatedWork W2351491280 @default.
- W2944238254 hasRelatedWork W2371447506 @default.
- W2944238254 hasRelatedWork W2372022541 @default.
- W2944238254 hasRelatedWork W2386767533 @default.
- W2944238254 hasRelatedWork W2393888177 @default.
- W2944238254 hasRelatedWork W303980170 @default.
- W2944238254 hasRelatedWork W3107474891 @default.
- W2944238254 hasRelatedWork W4224271314 @default.
- W2944238254 isParatext "false" @default.
- W2944238254 isRetracted "false" @default.
- W2944238254 magId "2944238254" @default.
- W2944238254 workType "article" @default.