Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944294486> ?p ?o ?g. }
- W2944294486 endingPage "523" @default.
- W2944294486 startingPage "507" @default.
- W2944294486 abstract "When a spatial regression model that links a response variable to a set of explanatory variables is desired, it is unlikely that the same regression model holds throughout the domain when the spatial domain and dataset are both large and complex. The locations where the trend changes may not be known, and we present here a mixture of regression models approach to identifying the locations wherein the relationship between the predictors and the response is similar; to estimating the model within each group; and to estimating the number of groups. An EM algorithm for estimating this model is presented along with a criterion for choosing the number of groups. Performance of the estimators and model selection are demonstrated through simulation. An example with groundwater depth and associated predictors generated from a large physical model simulation demonstrates the fit and interpretation of the proposed model. R code is provided in the supplementary materials that simulates the scenarios tested herein; implements the method; and reproduces the groundwater depth results. Supplementary materials for this article are available online." @default.
- W2944294486 created "2019-05-16" @default.
- W2944294486 creator A5025517633 @default.
- W2944294486 creator A5069835876 @default.
- W2944294486 date "2019-06-17" @default.
- W2944294486 modified "2023-10-16" @default.
- W2944294486 title "Mixture of Regression Models for Large Spatial Datasets" @default.
- W2944294486 cites W136075589 @default.
- W2944294486 cites W1528177290 @default.
- W2944294486 cites W1534349507 @default.
- W2944294486 cites W1735309556 @default.
- W2944294486 cites W1972268104 @default.
- W2944294486 cites W1976840258 @default.
- W2944294486 cites W1978900605 @default.
- W2944294486 cites W1983297675 @default.
- W2944294486 cites W1997231559 @default.
- W2944294486 cites W2000359198 @default.
- W2944294486 cites W2011832962 @default.
- W2944294486 cites W2012869021 @default.
- W2944294486 cites W2020869916 @default.
- W2944294486 cites W2020925091 @default.
- W2944294486 cites W2020999234 @default.
- W2944294486 cites W2027081786 @default.
- W2944294486 cites W2030597423 @default.
- W2944294486 cites W2037139490 @default.
- W2944294486 cites W2040850257 @default.
- W2944294486 cites W2047120335 @default.
- W2944294486 cites W2047555270 @default.
- W2944294486 cites W2050497240 @default.
- W2944294486 cites W2076364662 @default.
- W2944294486 cites W2080006911 @default.
- W2944294486 cites W2085210969 @default.
- W2944294486 cites W2100506777 @default.
- W2944294486 cites W2109820980 @default.
- W2944294486 cites W2114850187 @default.
- W2944294486 cites W2122471136 @default.
- W2944294486 cites W2124315825 @default.
- W2944294486 cites W2135046866 @default.
- W2944294486 cites W2145718662 @default.
- W2944294486 cites W2154560360 @default.
- W2944294486 cites W2166916666 @default.
- W2944294486 cites W2170193555 @default.
- W2944294486 cites W2265192161 @default.
- W2944294486 cites W2312180640 @default.
- W2944294486 cites W2516312426 @default.
- W2944294486 cites W2553784009 @default.
- W2944294486 cites W2787031726 @default.
- W2944294486 cites W2802673375 @default.
- W2944294486 cites W28766783 @default.
- W2944294486 cites W3101651037 @default.
- W2944294486 cites W3104631984 @default.
- W2944294486 cites W3125553893 @default.
- W2944294486 cites W4237489709 @default.
- W2944294486 cites W4239122099 @default.
- W2944294486 cites W4254499902 @default.
- W2944294486 doi "https://doi.org/10.1080/00401706.2019.1569558" @default.
- W2944294486 hasPublicationYear "2019" @default.
- W2944294486 type Work @default.
- W2944294486 sameAs 2944294486 @default.
- W2944294486 citedByCount "2" @default.
- W2944294486 countsByYear W29442944862020 @default.
- W2944294486 countsByYear W29442944862021 @default.
- W2944294486 crossrefType "journal-article" @default.
- W2944294486 hasAuthorship W2944294486A5025517633 @default.
- W2944294486 hasAuthorship W2944294486A5069835876 @default.
- W2944294486 hasBestOaLocation W29442944862 @default.
- W2944294486 hasConcept C105795698 @default.
- W2944294486 hasConcept C124101348 @default.
- W2944294486 hasConcept C134306372 @default.
- W2944294486 hasConcept C152877465 @default.
- W2944294486 hasConcept C159620131 @default.
- W2944294486 hasConcept C177264268 @default.
- W2944294486 hasConcept C182365436 @default.
- W2944294486 hasConcept C185429906 @default.
- W2944294486 hasConcept C199360897 @default.
- W2944294486 hasConcept C33923547 @default.
- W2944294486 hasConcept C41008148 @default.
- W2944294486 hasConcept C48921125 @default.
- W2944294486 hasConcept C83546350 @default.
- W2944294486 hasConceptScore W2944294486C105795698 @default.
- W2944294486 hasConceptScore W2944294486C124101348 @default.
- W2944294486 hasConceptScore W2944294486C134306372 @default.
- W2944294486 hasConceptScore W2944294486C152877465 @default.
- W2944294486 hasConceptScore W2944294486C159620131 @default.
- W2944294486 hasConceptScore W2944294486C177264268 @default.
- W2944294486 hasConceptScore W2944294486C182365436 @default.
- W2944294486 hasConceptScore W2944294486C185429906 @default.
- W2944294486 hasConceptScore W2944294486C199360897 @default.
- W2944294486 hasConceptScore W2944294486C33923547 @default.
- W2944294486 hasConceptScore W2944294486C41008148 @default.
- W2944294486 hasConceptScore W2944294486C48921125 @default.
- W2944294486 hasConceptScore W2944294486C83546350 @default.
- W2944294486 hasFunder F4320322320 @default.
- W2944294486 hasIssue "4" @default.
- W2944294486 hasLocation W29442944861 @default.
- W2944294486 hasLocation W29442944862 @default.
- W2944294486 hasOpenAccess W2944294486 @default.
- W2944294486 hasPrimaryLocation W29442944861 @default.