Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944361042> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2944361042 abstract "Feature extraction and selection are significant operations to improve the recognition accuracy of facial expression systems. The distribution of geometric features and their quantity plays a decisive role in the quality of the process of image matching, particularly for some databases which have more challenges in terms of system accuracy. In this paper, we exploit a robust system to mitigate these challenges as this is essential for real-time applications. We concentrate on geometric feature extraction automatically from raw data with one of the most attractive methods for classification in the field of neural networks namely deep learning. Our improved system consists of the following: solving the misalignment problem of the training images, lower complexity for geometric feature extraction, and finally, auto-encoder deep learning. The performance of the image-based expression recognition is evaluated for the first time on three spontaneous databases with different challenges with geometric and appearance based features for comparison. The three spontaneous databases are the Video Database of Moving Faces and People (VDMFP), MMI facial expression database and Belfast Induced Natural Emotion Database (BINED) each having different challenges in terms of system accuracy. Deep learning with a high-level feature representation, clearly outperforms state-of-the-art techniques." @default.
- W2944361042 created "2019-05-16" @default.
- W2944361042 creator A5053121936 @default.
- W2944361042 creator A5061082888 @default.
- W2944361042 creator A5083892296 @default.
- W2944361042 creator A5091391126 @default.
- W2944361042 date "2018-11-01" @default.
- W2944361042 modified "2023-09-24" @default.
- W2944361042 title "Deep-Learning Based Facial Expression Recognition System Evaluated on Three Spontaneous Databases" @default.
- W2944361042 cites W1965696296 @default.
- W2944361042 cites W1968684116 @default.
- W2944361042 cites W1990517717 @default.
- W2944361042 cites W1997320534 @default.
- W2944361042 cites W2022024883 @default.
- W2944361042 cites W2038952578 @default.
- W2944361042 cites W2053757129 @default.
- W2944361042 cites W2099866409 @default.
- W2944361042 cites W2101866605 @default.
- W2944361042 cites W2107497073 @default.
- W2944361042 cites W2145310492 @default.
- W2944361042 cites W2152826865 @default.
- W2944361042 cites W2161634108 @default.
- W2944361042 cites W2506506742 @default.
- W2944361042 cites W2753371832 @default.
- W2944361042 cites W2767520979 @default.
- W2944361042 cites W3097096317 @default.
- W2944361042 doi "https://doi.org/10.1109/isivc.2018.8709224" @default.
- W2944361042 hasPublicationYear "2018" @default.
- W2944361042 type Work @default.
- W2944361042 sameAs 2944361042 @default.
- W2944361042 citedByCount "1" @default.
- W2944361042 countsByYear W29443610422020 @default.
- W2944361042 crossrefType "proceedings-article" @default.
- W2944361042 hasAuthorship W2944361042A5053121936 @default.
- W2944361042 hasAuthorship W2944361042A5061082888 @default.
- W2944361042 hasAuthorship W2944361042A5083892296 @default.
- W2944361042 hasAuthorship W2944361042A5091391126 @default.
- W2944361042 hasConcept C108583219 @default.
- W2944361042 hasConcept C153180895 @default.
- W2944361042 hasConcept C154945302 @default.
- W2944361042 hasConcept C195704467 @default.
- W2944361042 hasConcept C2987714656 @default.
- W2944361042 hasConcept C31510193 @default.
- W2944361042 hasConcept C41008148 @default.
- W2944361042 hasConcept C77088390 @default.
- W2944361042 hasConceptScore W2944361042C108583219 @default.
- W2944361042 hasConceptScore W2944361042C153180895 @default.
- W2944361042 hasConceptScore W2944361042C154945302 @default.
- W2944361042 hasConceptScore W2944361042C195704467 @default.
- W2944361042 hasConceptScore W2944361042C2987714656 @default.
- W2944361042 hasConceptScore W2944361042C31510193 @default.
- W2944361042 hasConceptScore W2944361042C41008148 @default.
- W2944361042 hasConceptScore W2944361042C77088390 @default.
- W2944361042 hasLocation W29443610421 @default.
- W2944361042 hasOpenAccess W2944361042 @default.
- W2944361042 hasPrimaryLocation W29443610421 @default.
- W2944361042 hasRelatedWork W1560999061 @default.
- W2944361042 hasRelatedWork W1591965711 @default.
- W2944361042 hasRelatedWork W1604550738 @default.
- W2944361042 hasRelatedWork W1982770690 @default.
- W2944361042 hasRelatedWork W2503569529 @default.
- W2944361042 hasRelatedWork W3000095492 @default.
- W2944361042 hasRelatedWork W3018375584 @default.
- W2944361042 hasRelatedWork W3025013756 @default.
- W2944361042 hasRelatedWork W3194078543 @default.
- W2944361042 hasRelatedWork W3108696707 @default.
- W2944361042 isParatext "false" @default.
- W2944361042 isRetracted "false" @default.
- W2944361042 magId "2944361042" @default.
- W2944361042 workType "article" @default.