Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944388294> ?p ?o ?g. }
- W2944388294 endingPage "152" @default.
- W2944388294 startingPage "132" @default.
- W2944388294 abstract "Hyperspectral images (HSIs) have rich spectral information, but the various noises generated during the imaging process destroy the visual quality of images and lower the application precision. Therefore, it's crucial to denoise HSI for making better use of it. At present, low-rank-based methods have shown potential in mixture noises removal. While their limitations in rank function approximation, which affects the description of the low rank property in HSI, still need to be broken through. This paper puts forward a bilinear low rank matrix factorization (BLRMF) HSI denoising method, where the bi-nuclear quasi-norm is employed for constraining the low rank characteristic in HSI. The bi-nuclear quasi-norm is a closer approximation to the rank function and can be calculated by the nuclear norms of two smaller factor matrices, which respectively describe the spatial low rank and the spectral low rank. The Alternating Direction Method of Multipliers (ADMM) is employed for solving the optimization problem. A large number of experiments on HSI denoising are conducted to verify the superiority of the BLRMF over the mainstream denoising methods." @default.
- W2944388294 created "2019-05-16" @default.
- W2944388294 creator A5000558403 @default.
- W2944388294 creator A5032045741 @default.
- W2944388294 creator A5038097386 @default.
- W2944388294 creator A5045212219 @default.
- W2944388294 creator A5047576305 @default.
- W2944388294 date "2019-10-01" @default.
- W2944388294 modified "2023-10-16" @default.
- W2944388294 title "Hyperspectral image denoising with bilinear low rank matrix factorization" @default.
- W2944388294 cites W1944540851 @default.
- W2944388294 cites W1968602806 @default.
- W2944388294 cites W1974438823 @default.
- W2944388294 cites W1991003630 @default.
- W2944388294 cites W1994040806 @default.
- W2944388294 cites W1997201895 @default.
- W2944388294 cites W2014311222 @default.
- W2944388294 cites W2028587221 @default.
- W2944388294 cites W2039596145 @default.
- W2944388294 cites W2040812261 @default.
- W2944388294 cites W2049189005 @default.
- W2944388294 cites W2056370875 @default.
- W2944388294 cites W2070262806 @default.
- W2944388294 cites W2072026894 @default.
- W2944388294 cites W2078204800 @default.
- W2944388294 cites W2082590963 @default.
- W2944388294 cites W2083525611 @default.
- W2944388294 cites W2097323375 @default.
- W2944388294 cites W2103972604 @default.
- W2944388294 cites W2113945798 @default.
- W2944388294 cites W2114770744 @default.
- W2944388294 cites W2118550318 @default.
- W2944388294 cites W2122752532 @default.
- W2944388294 cites W2133665775 @default.
- W2944388294 cites W2134929491 @default.
- W2944388294 cites W2136251662 @default.
- W2944388294 cites W2140702875 @default.
- W2944388294 cites W2144348684 @default.
- W2944388294 cites W2153663612 @default.
- W2944388294 cites W2160484748 @default.
- W2944388294 cites W2161073299 @default.
- W2944388294 cites W2163886442 @default.
- W2944388294 cites W2169899245 @default.
- W2944388294 cites W2171520281 @default.
- W2944388294 cites W2256634236 @default.
- W2944388294 cites W2313932751 @default.
- W2944388294 cites W2336406062 @default.
- W2944388294 cites W2414009677 @default.
- W2944388294 cites W2735711969 @default.
- W2944388294 cites W2752077201 @default.
- W2944388294 cites W2773415061 @default.
- W2944388294 cites W2964179170 @default.
- W2944388294 cites W3103964896 @default.
- W2944388294 doi "https://doi.org/10.1016/j.sigpro.2019.04.029" @default.
- W2944388294 hasPublicationYear "2019" @default.
- W2944388294 type Work @default.
- W2944388294 sameAs 2944388294 @default.
- W2944388294 citedByCount "25" @default.
- W2944388294 countsByYear W29443882942019 @default.
- W2944388294 countsByYear W29443882942020 @default.
- W2944388294 countsByYear W29443882942021 @default.
- W2944388294 countsByYear W29443882942022 @default.
- W2944388294 countsByYear W29443882942023 @default.
- W2944388294 crossrefType "journal-article" @default.
- W2944388294 hasAuthorship W2944388294A5000558403 @default.
- W2944388294 hasAuthorship W2944388294A5032045741 @default.
- W2944388294 hasAuthorship W2944388294A5038097386 @default.
- W2944388294 hasAuthorship W2944388294A5045212219 @default.
- W2944388294 hasAuthorship W2944388294A5047576305 @default.
- W2944388294 hasConcept C105795698 @default.
- W2944388294 hasConcept C11413529 @default.
- W2944388294 hasConcept C114614502 @default.
- W2944388294 hasConcept C121332964 @default.
- W2944388294 hasConcept C134306372 @default.
- W2944388294 hasConcept C153180895 @default.
- W2944388294 hasConcept C154945302 @default.
- W2944388294 hasConcept C158693339 @default.
- W2944388294 hasConcept C159078339 @default.
- W2944388294 hasConcept C163294075 @default.
- W2944388294 hasConcept C164226766 @default.
- W2944388294 hasConcept C17744445 @default.
- W2944388294 hasConcept C187834632 @default.
- W2944388294 hasConcept C191795146 @default.
- W2944388294 hasConcept C199539241 @default.
- W2944388294 hasConcept C205203396 @default.
- W2944388294 hasConcept C25023664 @default.
- W2944388294 hasConcept C33923547 @default.
- W2944388294 hasConcept C41008148 @default.
- W2944388294 hasConcept C42355184 @default.
- W2944388294 hasConcept C62520636 @default.
- W2944388294 hasConcept C90199385 @default.
- W2944388294 hasConcept C92207270 @default.
- W2944388294 hasConceptScore W2944388294C105795698 @default.
- W2944388294 hasConceptScore W2944388294C11413529 @default.
- W2944388294 hasConceptScore W2944388294C114614502 @default.
- W2944388294 hasConceptScore W2944388294C121332964 @default.
- W2944388294 hasConceptScore W2944388294C134306372 @default.
- W2944388294 hasConceptScore W2944388294C153180895 @default.