Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944406047> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2944406047 endingPage "545" @default.
- W2944406047 startingPage "533" @default.
- W2944406047 abstract "Abstract With the development of information technology and economic growth, the Internet of Things (IoT) industry has also entered the fast lane of development. The IoT industry system has also gradually improved, forming a complete industrial foundation, including chips, electronic components, equipment, software, integrated systems, IoT services, and telecom operators. In the event of selective forwarding attacks, virus damage, malicious virus intrusion, etc., the losses caused by such security problems are more serious than those of traditional networks, which are not only network information materials, but also physical objects. The limitations of sensor node resources in the Internet of Things, the complexity of networking, and the open wireless broadcast communication characteristics make it vulnerable to attacks. Intrusion Detection System (IDS) helps identify anomalies in the network and takes the necessary countermeasures to ensure the safe and reliable operation of IoT applications. This paper proposes an IoT feature extraction and intrusion detection algorithm for intelligent city based on deep migration learning model, which combines deep learning model with intrusion detection technology. According to the existing literature and algorithms, this paper introduces the modeling scheme of migration learning model and data feature extraction. In the experimental part, KDD CUP 99 was selected as the experimental data set, and 10% of the data was used as training data. At the same time, the proposed algorithm is compared with the existing algorithms. The experimental results show that the proposed algorithm has shorter detection time and higher detection efficiency." @default.
- W2944406047 created "2019-05-16" @default.
- W2944406047 creator A5013621690 @default.
- W2944406047 creator A5042417097 @default.
- W2944406047 creator A5055731984 @default.
- W2944406047 creator A5089466271 @default.
- W2944406047 date "2019-12-01" @default.
- W2944406047 modified "2023-10-06" @default.
- W2944406047 title "IoT data feature extraction and intrusion detection system for smart cities based on deep migration learning" @default.
- W2944406047 cites W2039759229 @default.
- W2944406047 cites W2119046642 @default.
- W2944406047 cites W2165698076 @default.
- W2944406047 cites W2333024294 @default.
- W2944406047 cites W2345548364 @default.
- W2944406047 cites W2470527509 @default.
- W2944406047 cites W2595412674 @default.
- W2944406047 cites W2606217251 @default.
- W2944406047 cites W2729688832 @default.
- W2944406047 cites W2758859316 @default.
- W2944406047 cites W2912325838 @default.
- W2944406047 cites W2934302500 @default.
- W2944406047 doi "https://doi.org/10.1016/j.ijinfomgt.2019.04.006" @default.
- W2944406047 hasPublicationYear "2019" @default.
- W2944406047 type Work @default.
- W2944406047 sameAs 2944406047 @default.
- W2944406047 citedByCount "119" @default.
- W2944406047 countsByYear W29444060472019 @default.
- W2944406047 countsByYear W29444060472020 @default.
- W2944406047 countsByYear W29444060472021 @default.
- W2944406047 countsByYear W29444060472022 @default.
- W2944406047 countsByYear W29444060472023 @default.
- W2944406047 crossrefType "journal-article" @default.
- W2944406047 hasAuthorship W2944406047A5013621690 @default.
- W2944406047 hasAuthorship W2944406047A5042417097 @default.
- W2944406047 hasAuthorship W2944406047A5055731984 @default.
- W2944406047 hasAuthorship W2944406047A5089466271 @default.
- W2944406047 hasConcept C108583219 @default.
- W2944406047 hasConcept C154945302 @default.
- W2944406047 hasConcept C185592680 @default.
- W2944406047 hasConcept C2777103469 @default.
- W2944406047 hasConcept C35525427 @default.
- W2944406047 hasConcept C38652104 @default.
- W2944406047 hasConcept C41008148 @default.
- W2944406047 hasConcept C43617362 @default.
- W2944406047 hasConcept C4725764 @default.
- W2944406047 hasConcept C52622490 @default.
- W2944406047 hasConcept C81860439 @default.
- W2944406047 hasConceptScore W2944406047C108583219 @default.
- W2944406047 hasConceptScore W2944406047C154945302 @default.
- W2944406047 hasConceptScore W2944406047C185592680 @default.
- W2944406047 hasConceptScore W2944406047C2777103469 @default.
- W2944406047 hasConceptScore W2944406047C35525427 @default.
- W2944406047 hasConceptScore W2944406047C38652104 @default.
- W2944406047 hasConceptScore W2944406047C41008148 @default.
- W2944406047 hasConceptScore W2944406047C43617362 @default.
- W2944406047 hasConceptScore W2944406047C4725764 @default.
- W2944406047 hasConceptScore W2944406047C52622490 @default.
- W2944406047 hasConceptScore W2944406047C81860439 @default.
- W2944406047 hasFunder F4320321543 @default.
- W2944406047 hasLocation W29444060471 @default.
- W2944406047 hasOpenAccess W2944406047 @default.
- W2944406047 hasPrimaryLocation W29444060471 @default.
- W2944406047 hasRelatedWork W2279398222 @default.
- W2944406047 hasRelatedWork W2618984630 @default.
- W2944406047 hasRelatedWork W2773120646 @default.
- W2944406047 hasRelatedWork W2951983144 @default.
- W2944406047 hasRelatedWork W2982078027 @default.
- W2944406047 hasRelatedWork W3156786002 @default.
- W2944406047 hasRelatedWork W3192024361 @default.
- W2944406047 hasRelatedWork W4295530489 @default.
- W2944406047 hasRelatedWork W4299822940 @default.
- W2944406047 hasRelatedWork W4313313328 @default.
- W2944406047 hasVolume "49" @default.
- W2944406047 isParatext "false" @default.
- W2944406047 isRetracted "false" @default.
- W2944406047 magId "2944406047" @default.
- W2944406047 workType "article" @default.