Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944431608> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2944431608 abstract "Design and implementation of AI algorithms for the evaluation of service quality in mobile radio networks. This thesis project aims to study the application of innovative paradigms such as artificial intelligence and machine learning within a highly dynamic and constantly evolving context, such as telecommunications. Mobile operators are constantly looking for innovative services to provide to their customers, while trying to optimize those already provided. Without doubt, the data service is central, as is shown by the numerous actions that aim to integrate it into numerous and varied fields (just think of the advent of the 5G and the IoT - Internet of Things). Among the possible areas of integration there are voice and messaging services. Currently, the technology foreseen for this objective is called VoLTE (Voice over LTE), which allows to establish voice calls on the LTE network based on a full IMS (IP Multimedia Subsystem) architectural model. However, nowadays this technology is not available everywhere, so the operators rely, at the moment, on an intermediate solution known as CSFB (Circuit Switched Fall-Back), which allows to switch (fall-back) from LTE network to legacy 3G / 2G networks to make a call or send a message, and then to return to the LTE network once the operation is completed. Mobile operators are interested in benchmark testing regarding the quality of the CSFB technology, in order to optimize their infrastructure where the need arises. This analysis operation is very laborious and takes a very long time. We tried to create artificial intelligence algorithms based on logics dictated by the experience of industry analysts, with the aim of automating these cataloguing operations. After obtaining a good accuracy of the results of the algorithms, compared to those of the analysts, we have passed to the application of the machine learning technique known as anomaly detection. This technique is generally used to identify objects, events or observations, which differ significantly from most of the data. Specifically, it was used to detect significant changes in failed mobile telephone calls in a specific geographical area, so that analysts, taking note of the variation, could carry out a more in-depth analysis. With this thesis elaboration we worked on two different aspects, on one hand the development of artificial intelligence algorithms for the automation of the analysis processes, while on the other the integration of specific machine learning techniques, such as the anomaly detection, on the data obtained from the algorithms. Therefore, the main objective is to provide an additional service to the analysts for the analysis of the benchmark logs. The tests carried out have demonstrated the potential of using these innovative techniques in this particular context, highlighting also some limitations that will be the object of possible future optimizations." @default.
- W2944431608 created "2019-05-16" @default.
- W2944431608 creator A5017929242 @default.
- W2944431608 date "2019-04-16" @default.
- W2944431608 modified "2023-09-27" @default.
- W2944431608 title "Data driven evaluation of quality of service in mobile radio networks via machine learning" @default.
- W2944431608 hasPublicationYear "2019" @default.
- W2944431608 type Work @default.
- W2944431608 sameAs 2944431608 @default.
- W2944431608 citedByCount "0" @default.
- W2944431608 crossrefType "journal-article" @default.
- W2944431608 hasAuthorship W2944431608A5017929242 @default.
- W2944431608 hasConcept C111472728 @default.
- W2944431608 hasConcept C136264566 @default.
- W2944431608 hasConcept C138885662 @default.
- W2944431608 hasConcept C151730666 @default.
- W2944431608 hasConcept C153646914 @default.
- W2944431608 hasConcept C162324750 @default.
- W2944431608 hasConcept C2779343474 @default.
- W2944431608 hasConcept C2779530757 @default.
- W2944431608 hasConcept C2780137118 @default.
- W2944431608 hasConcept C2780378061 @default.
- W2944431608 hasConcept C2781307350 @default.
- W2944431608 hasConcept C2781327853 @default.
- W2944431608 hasConcept C31258907 @default.
- W2944431608 hasConcept C41008148 @default.
- W2944431608 hasConcept C5119721 @default.
- W2944431608 hasConcept C68649174 @default.
- W2944431608 hasConcept C74558129 @default.
- W2944431608 hasConcept C76155785 @default.
- W2944431608 hasConcept C86803240 @default.
- W2944431608 hasConcept C95491727 @default.
- W2944431608 hasConceptScore W2944431608C111472728 @default.
- W2944431608 hasConceptScore W2944431608C136264566 @default.
- W2944431608 hasConceptScore W2944431608C138885662 @default.
- W2944431608 hasConceptScore W2944431608C151730666 @default.
- W2944431608 hasConceptScore W2944431608C153646914 @default.
- W2944431608 hasConceptScore W2944431608C162324750 @default.
- W2944431608 hasConceptScore W2944431608C2779343474 @default.
- W2944431608 hasConceptScore W2944431608C2779530757 @default.
- W2944431608 hasConceptScore W2944431608C2780137118 @default.
- W2944431608 hasConceptScore W2944431608C2780378061 @default.
- W2944431608 hasConceptScore W2944431608C2781307350 @default.
- W2944431608 hasConceptScore W2944431608C2781327853 @default.
- W2944431608 hasConceptScore W2944431608C31258907 @default.
- W2944431608 hasConceptScore W2944431608C41008148 @default.
- W2944431608 hasConceptScore W2944431608C5119721 @default.
- W2944431608 hasConceptScore W2944431608C68649174 @default.
- W2944431608 hasConceptScore W2944431608C74558129 @default.
- W2944431608 hasConceptScore W2944431608C76155785 @default.
- W2944431608 hasConceptScore W2944431608C86803240 @default.
- W2944431608 hasConceptScore W2944431608C95491727 @default.
- W2944431608 hasLocation W29444316081 @default.
- W2944431608 hasOpenAccess W2944431608 @default.
- W2944431608 hasPrimaryLocation W29444316081 @default.
- W2944431608 hasRelatedWork W1480246371 @default.
- W2944431608 hasRelatedWork W1515068011 @default.
- W2944431608 hasRelatedWork W2068177095 @default.
- W2944431608 hasRelatedWork W2082527215 @default.
- W2944431608 hasRelatedWork W2084812196 @default.
- W2944431608 hasRelatedWork W2332913970 @default.
- W2944431608 hasRelatedWork W2791279818 @default.
- W2944431608 hasRelatedWork W2793676270 @default.
- W2944431608 hasRelatedWork W2889318847 @default.
- W2944431608 hasRelatedWork W2901451066 @default.
- W2944431608 hasRelatedWork W2913207978 @default.
- W2944431608 hasRelatedWork W2914940294 @default.
- W2944431608 hasRelatedWork W2947503872 @default.
- W2944431608 hasRelatedWork W3010873362 @default.
- W2944431608 hasRelatedWork W3082603829 @default.
- W2944431608 hasRelatedWork W3121115029 @default.
- W2944431608 hasRelatedWork W3159936276 @default.
- W2944431608 hasRelatedWork W3161209171 @default.
- W2944431608 hasRelatedWork W3201079593 @default.
- W2944431608 hasRelatedWork W3212625833 @default.
- W2944431608 isParatext "false" @default.
- W2944431608 isRetracted "false" @default.
- W2944431608 magId "2944431608" @default.
- W2944431608 workType "article" @default.