Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944502521> ?p ?o ?g. }
- W2944502521 endingPage "1600344" @default.
- W2944502521 startingPage "1600344" @default.
- W2944502521 abstract "We present mathematical arguments and experimental evidence that suggest that Gaussian approximations of posterior distributions are appropriate even if the physical system under consideration is nonlinear. The reason for this is a regularizing effect of the observations that can turn multi-modal prior distributions into nearly Gaussian posterior distributions. This has important ramifications on data assimilation (DA) algorithms in numerical weather prediction because the various algorithms (ensemble Kalman filters/smoothers, variational methods, particle filters (PF)/smoothers (PS)) apply Gaussian approximations to different distributions, which leads to different approximate posterior distributions, and, subsequently, different degrees of error in their representation of the true posterior distribution. In particular, we explain that, in problems with ‘medium’ nonlinearity, (i) smoothers and variational methods tend to outperform ensemble Kalman filters; (ii) smoothers can be as accurate as PF, but may require fewer ensemble members; (iii) localization of PFs can introduce errors that are more severe than errors due to Gaussian approximations. In problems with ‘strong’ nonlinearity, posterior distributions are not amenable to Gaussian approximation. This happens, e.g. when posterior distributions are multi-modal. PFs can be used on these problems, but the required ensemble size is expected to be large (hundreds to thousands), even if the PFs are localized. Moreover, the usual indicators of performance (small root mean square error and comparable spread) may not be useful in strongly nonlinear problems. We arrive at these conclusions using a combination of theoretical considerations and a suite of numerical DA experiments with low- and high-dimensional nonlinear models in which we can control the nonlinearity." @default.
- W2944502521 created "2019-05-16" @default.
- W2944502521 creator A5057976661 @default.
- W2944502521 creator A5074719292 @default.
- W2944502521 date "2019-01-01" @default.
- W2944502521 modified "2023-09-25" @default.
- W2944502521 title "Gaussian approximations in filters and smoothers for data assimilation" @default.
- W2944502521 cites W1483307070 @default.
- W2944502521 cites W1816972969 @default.
- W2944502521 cites W1828859704 @default.
- W2944502521 cites W1896953440 @default.
- W2944502521 cites W1975514297 @default.
- W2944502521 cites W1981191605 @default.
- W2944502521 cites W1981476726 @default.
- W2944502521 cites W1984453299 @default.
- W2944502521 cites W1986497447 @default.
- W2944502521 cites W1988927531 @default.
- W2944502521 cites W2000309039 @default.
- W2944502521 cites W2011088711 @default.
- W2944502521 cites W2023600937 @default.
- W2944502521 cites W2025179796 @default.
- W2944502521 cites W2031745599 @default.
- W2944502521 cites W2042151453 @default.
- W2944502521 cites W2050841740 @default.
- W2944502521 cites W2087158441 @default.
- W2944502521 cites W2099506144 @default.
- W2944502521 cites W2100335374 @default.
- W2944502521 cites W2110701979 @default.
- W2944502521 cites W2118010588 @default.
- W2944502521 cites W2137432135 @default.
- W2944502521 cites W2141394518 @default.
- W2944502521 cites W2146803308 @default.
- W2944502521 cites W2147698782 @default.
- W2944502521 cites W2150951085 @default.
- W2944502521 cites W2158968034 @default.
- W2944502521 cites W2160444846 @default.
- W2944502521 cites W2164505281 @default.
- W2944502521 cites W2173190456 @default.
- W2944502521 cites W2180946617 @default.
- W2944502521 cites W2324598374 @default.
- W2944502521 cites W2326653635 @default.
- W2944502521 cites W2502172102 @default.
- W2944502521 cites W2559809345 @default.
- W2944502521 cites W2596133991 @default.
- W2944502521 cites W2790048530 @default.
- W2944502521 cites W2792356241 @default.
- W2944502521 cites W2964137281 @default.
- W2944502521 cites W3102241261 @default.
- W2944502521 cites W4241683548 @default.
- W2944502521 cites W4255933195 @default.
- W2944502521 doi "https://doi.org/10.1080/16000870.2019.1600344" @default.
- W2944502521 hasPublicationYear "2019" @default.
- W2944502521 type Work @default.
- W2944502521 sameAs 2944502521 @default.
- W2944502521 citedByCount "13" @default.
- W2944502521 countsByYear W29445025212020 @default.
- W2944502521 countsByYear W29445025212021 @default.
- W2944502521 countsByYear W29445025212022 @default.
- W2944502521 countsByYear W29445025212023 @default.
- W2944502521 crossrefType "journal-article" @default.
- W2944502521 hasAuthorship W2944502521A5057976661 @default.
- W2944502521 hasAuthorship W2944502521A5074719292 @default.
- W2944502521 hasBestOaLocation W29445025211 @default.
- W2944502521 hasConcept C105795698 @default.
- W2944502521 hasConcept C107673813 @default.
- W2944502521 hasConcept C11413529 @default.
- W2944502521 hasConcept C121332964 @default.
- W2944502521 hasConcept C126255220 @default.
- W2944502521 hasConcept C139945424 @default.
- W2944502521 hasConcept C147947694 @default.
- W2944502521 hasConcept C153294291 @default.
- W2944502521 hasConcept C157286648 @default.
- W2944502521 hasConcept C158622935 @default.
- W2944502521 hasConcept C163716315 @default.
- W2944502521 hasConcept C206833254 @default.
- W2944502521 hasConcept C24552861 @default.
- W2944502521 hasConcept C28826006 @default.
- W2944502521 hasConcept C33923547 @default.
- W2944502521 hasConcept C41008148 @default.
- W2944502521 hasConcept C57830394 @default.
- W2944502521 hasConcept C62520636 @default.
- W2944502521 hasConcept C79334102 @default.
- W2944502521 hasConceptScore W2944502521C105795698 @default.
- W2944502521 hasConceptScore W2944502521C107673813 @default.
- W2944502521 hasConceptScore W2944502521C11413529 @default.
- W2944502521 hasConceptScore W2944502521C121332964 @default.
- W2944502521 hasConceptScore W2944502521C126255220 @default.
- W2944502521 hasConceptScore W2944502521C139945424 @default.
- W2944502521 hasConceptScore W2944502521C147947694 @default.
- W2944502521 hasConceptScore W2944502521C153294291 @default.
- W2944502521 hasConceptScore W2944502521C157286648 @default.
- W2944502521 hasConceptScore W2944502521C158622935 @default.
- W2944502521 hasConceptScore W2944502521C163716315 @default.
- W2944502521 hasConceptScore W2944502521C206833254 @default.
- W2944502521 hasConceptScore W2944502521C24552861 @default.
- W2944502521 hasConceptScore W2944502521C28826006 @default.
- W2944502521 hasConceptScore W2944502521C33923547 @default.
- W2944502521 hasConceptScore W2944502521C41008148 @default.