Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944503153> ?p ?o ?g. }
- W2944503153 abstract "Measuring Mutual Information (MI) between high-dimensional, continuous, random variables from observed samples has wide theoretical and practical applications. Recent work, MINE (Belghazi et al. 2018), focused on estimating tight variational lower bounds of MI using neural networks, but assumed unlimited supply of samples to prevent overfitting. In real world applications, data is not always available at a surplus. In this work, we focus on improving data efficiency and propose a Data-Efficient MINE Estimator (DEMINE), by developing a relaxed predictive MI lower bound that can be estimated at higher data efficiency by orders of magnitudes. The predictive MI lower bound also enables us to develop a new meta-learning approach using task augmentation, Meta-DEMINE, to improve generalization of the network and further boost estimation accuracy empirically. With improved data-efficiency, our estimators enables statistical testing of dependency at practical dataset sizes. We demonstrate the effectiveness of our estimators on synthetic benchmarks and a real world fMRI data, with application of inter-subject correlation analysis." @default.
- W2944503153 created "2019-05-16" @default.
- W2944503153 creator A5022801269 @default.
- W2944503153 creator A5028124265 @default.
- W2944503153 creator A5034255290 @default.
- W2944503153 creator A5037356328 @default.
- W2944503153 creator A5051505010 @default.
- W2944503153 creator A5057426885 @default.
- W2944503153 date "2019-05-08" @default.
- W2944503153 modified "2023-09-27" @default.
- W2944503153 title "Data-Efficient Mutual Information Neural Estimator" @default.
- W2944503153 cites W115285041 @default.
- W2944503153 cites W1522301498 @default.
- W2944503153 cites W1533861849 @default.
- W2944503153 cites W1970928383 @default.
- W2944503153 cites W1973776237 @default.
- W2944503153 cites W1976193721 @default.
- W2944503153 cites W2020044743 @default.
- W2944503153 cites W2025009638 @default.
- W2944503153 cites W2040704490 @default.
- W2944503153 cites W2052644075 @default.
- W2944503153 cites W2086839920 @default.
- W2944503153 cites W2092939357 @default.
- W2944503153 cites W2097615438 @default.
- W2944503153 cites W2100171838 @default.
- W2944503153 cites W2113207845 @default.
- W2944503153 cites W2113619522 @default.
- W2944503153 cites W2117140276 @default.
- W2944503153 cites W2117340355 @default.
- W2944503153 cites W2120773224 @default.
- W2944503153 cites W2127234432 @default.
- W2944503153 cites W2127271556 @default.
- W2944503153 cites W2130010412 @default.
- W2944503153 cites W2136573752 @default.
- W2944503153 cites W2142432333 @default.
- W2944503153 cites W2159237454 @default.
- W2944503153 cites W2166944917 @default.
- W2944503153 cites W2172168442 @default.
- W2944503153 cites W2301881409 @default.
- W2944503153 cites W2325305575 @default.
- W2944503153 cites W2481432072 @default.
- W2944503153 cites W2499800833 @default.
- W2944503153 cites W2590234371 @default.
- W2944503153 cites W2596367596 @default.
- W2944503153 cites W2601450892 @default.
- W2944503153 cites W2604763608 @default.
- W2944503153 cites W2789700415 @default.
- W2944503153 cites W2798279033 @default.
- W2944503153 cites W2803832867 @default.
- W2944503153 cites W2805481182 @default.
- W2944503153 cites W2900148439 @default.
- W2944503153 cites W2950220847 @default.
- W2944503153 cites W2951103577 @default.
- W2944503153 cites W2962732055 @default.
- W2944503153 cites W2962746461 @default.
- W2944503153 cites W2963233958 @default.
- W2944503153 cites W2963341924 @default.
- W2944503153 cites W2964078140 @default.
- W2944503153 hasPublicationYear "2019" @default.
- W2944503153 type Work @default.
- W2944503153 sameAs 2944503153 @default.
- W2944503153 citedByCount "5" @default.
- W2944503153 countsByYear W29445031532020 @default.
- W2944503153 countsByYear W29445031532021 @default.
- W2944503153 crossrefType "posted-content" @default.
- W2944503153 hasAuthorship W2944503153A5022801269 @default.
- W2944503153 hasAuthorship W2944503153A5028124265 @default.
- W2944503153 hasAuthorship W2944503153A5034255290 @default.
- W2944503153 hasAuthorship W2944503153A5037356328 @default.
- W2944503153 hasAuthorship W2944503153A5051505010 @default.
- W2944503153 hasAuthorship W2944503153A5057426885 @default.
- W2944503153 hasConcept C105795698 @default.
- W2944503153 hasConcept C119857082 @default.
- W2944503153 hasConcept C124101348 @default.
- W2944503153 hasConcept C134306372 @default.
- W2944503153 hasConcept C152139883 @default.
- W2944503153 hasConcept C154945302 @default.
- W2944503153 hasConcept C169258074 @default.
- W2944503153 hasConcept C177148314 @default.
- W2944503153 hasConcept C185429906 @default.
- W2944503153 hasConcept C19768560 @default.
- W2944503153 hasConcept C22019652 @default.
- W2944503153 hasConcept C33923547 @default.
- W2944503153 hasConcept C41008148 @default.
- W2944503153 hasConcept C50644808 @default.
- W2944503153 hasConcept C75684735 @default.
- W2944503153 hasConcept C77553402 @default.
- W2944503153 hasConceptScore W2944503153C105795698 @default.
- W2944503153 hasConceptScore W2944503153C119857082 @default.
- W2944503153 hasConceptScore W2944503153C124101348 @default.
- W2944503153 hasConceptScore W2944503153C134306372 @default.
- W2944503153 hasConceptScore W2944503153C152139883 @default.
- W2944503153 hasConceptScore W2944503153C154945302 @default.
- W2944503153 hasConceptScore W2944503153C169258074 @default.
- W2944503153 hasConceptScore W2944503153C177148314 @default.
- W2944503153 hasConceptScore W2944503153C185429906 @default.
- W2944503153 hasConceptScore W2944503153C19768560 @default.
- W2944503153 hasConceptScore W2944503153C22019652 @default.
- W2944503153 hasConceptScore W2944503153C33923547 @default.
- W2944503153 hasConceptScore W2944503153C41008148 @default.