Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944523909> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2944523909 abstract "Suppose that $f$ is a $K$-quasiconformal ($(K,K')$-quasiconformal resp.) self-mapping of the unit disk $mathbb{D}$, which satisfies the following: $(1)$ the inhomogeneous polyharmonic equation $Delta^{n}f=Delta(Delta^{n-1} f)=varphi_{n}$ $(varphi_{n}in mathcal{C}(overline{mathbb{D}}))$, (2) the boundary conditions $Delta^{n-1}f|_{mathbb{T}}=varphi_{n-1},~ldots,~Delta^{1}f|_{mathbb{T}}=varphi_{1}$ ($varphi_{j}inmathcal{C}(mathbb{T})$ for $jin{1,ldots,n-1}$ and $mathbb{T}$ denotes the unit circle), and $(3)$ $f(0)=0$, where $ngeq2$ is an integer and $Kgeq1$ ($K'geq0$ resp.). The main aim of this paper is to prove that $f$ is Lipschitz continuous, and,further, it is bi-Lipschitz continuous when $|varphi_{j}|_{infty}$ are small enough for $jin{1,ldots,n}$. Moreover, the estimates are asymptotically sharp as $Kto 1$ ($K'to0$ resp.) and $|varphi_{j}|_{infty}to 0$ for $jin{1,ldots,n}$, and thus, such a mapping $f$ behaves almost like a rotation for sufficiently small $K$ ($K'$ resp.) and $|varphi_{j}|_{infty}$ for $jin{1,ldots,n}$." @default.
- W2944523909 created "2019-05-16" @default.
- W2944523909 creator A5014626642 @default.
- W2944523909 creator A5067623130 @default.
- W2944523909 date "2019-05-05" @default.
- W2944523909 modified "2023-10-17" @default.
- W2944523909 title "On asymptotically sharp bi-Lipschitz inequalities of quasiconformal mappings satisfying inhomogeneous polyharmonic equations" @default.
- W2944523909 cites W1508041244 @default.
- W2944523909 cites W168397302 @default.
- W2944523909 cites W1963494449 @default.
- W2944523909 cites W1964450436 @default.
- W2944523909 cites W1964945261 @default.
- W2944523909 cites W1966789552 @default.
- W2944523909 cites W1973856453 @default.
- W2944523909 cites W1984279863 @default.
- W2944523909 cites W1987313727 @default.
- W2944523909 cites W2006282422 @default.
- W2944523909 cites W2008120868 @default.
- W2944523909 cites W2013529297 @default.
- W2944523909 cites W2027849034 @default.
- W2944523909 cites W2031993666 @default.
- W2944523909 cites W2038461858 @default.
- W2944523909 cites W2066405819 @default.
- W2944523909 cites W2078755009 @default.
- W2944523909 cites W2081618304 @default.
- W2944523909 cites W2084822343 @default.
- W2944523909 cites W2140831171 @default.
- W2944523909 cites W2154973821 @default.
- W2944523909 cites W2312982165 @default.
- W2944523909 cites W2316981228 @default.
- W2944523909 cites W2325627967 @default.
- W2944523909 cites W2465175065 @default.
- W2944523909 cites W2493562759 @default.
- W2944523909 cites W2761090960 @default.
- W2944523909 cites W2782546442 @default.
- W2944523909 cites W2888821605 @default.
- W2944523909 cites W2889928165 @default.
- W2944523909 cites W2937986765 @default.
- W2944523909 cites W2963098870 @default.
- W2944523909 cites W2963443119 @default.
- W2944523909 cites W2964282703 @default.
- W2944523909 cites W3008097442 @default.
- W2944523909 cites W3021943411 @default.
- W2944523909 cites W610795086 @default.
- W2944523909 cites W82960903 @default.
- W2944523909 cites W2521069737 @default.
- W2944523909 doi "https://doi.org/10.48550/arxiv.1905.02588" @default.
- W2944523909 hasPublicationYear "2019" @default.
- W2944523909 type Work @default.
- W2944523909 sameAs 2944523909 @default.
- W2944523909 citedByCount "1" @default.
- W2944523909 countsByYear W29445239092019 @default.
- W2944523909 crossrefType "posted-content" @default.
- W2944523909 hasAuthorship W2944523909A5014626642 @default.
- W2944523909 hasAuthorship W2944523909A5067623130 @default.
- W2944523909 hasBestOaLocation W29445239091 @default.
- W2944523909 hasConcept C114614502 @default.
- W2944523909 hasConcept C122637931 @default.
- W2944523909 hasConcept C134306372 @default.
- W2944523909 hasConcept C145420912 @default.
- W2944523909 hasConcept C191948623 @default.
- W2944523909 hasConcept C199360897 @default.
- W2944523909 hasConcept C22324862 @default.
- W2944523909 hasConcept C33923547 @default.
- W2944523909 hasConcept C41008148 @default.
- W2944523909 hasConcept C62354387 @default.
- W2944523909 hasConcept C97137487 @default.
- W2944523909 hasConceptScore W2944523909C114614502 @default.
- W2944523909 hasConceptScore W2944523909C122637931 @default.
- W2944523909 hasConceptScore W2944523909C134306372 @default.
- W2944523909 hasConceptScore W2944523909C145420912 @default.
- W2944523909 hasConceptScore W2944523909C191948623 @default.
- W2944523909 hasConceptScore W2944523909C199360897 @default.
- W2944523909 hasConceptScore W2944523909C22324862 @default.
- W2944523909 hasConceptScore W2944523909C33923547 @default.
- W2944523909 hasConceptScore W2944523909C41008148 @default.
- W2944523909 hasConceptScore W2944523909C62354387 @default.
- W2944523909 hasConceptScore W2944523909C97137487 @default.
- W2944523909 hasLocation W29445239091 @default.
- W2944523909 hasLocation W29445239092 @default.
- W2944523909 hasOpenAccess W2944523909 @default.
- W2944523909 hasPrimaryLocation W29445239091 @default.
- W2944523909 hasRelatedWork W1543927914 @default.
- W2944523909 hasRelatedWork W1978042415 @default.
- W2944523909 hasRelatedWork W2220084361 @default.
- W2944523909 hasRelatedWork W2592900118 @default.
- W2944523909 hasRelatedWork W3032880480 @default.
- W2944523909 hasRelatedWork W4206722294 @default.
- W2944523909 hasRelatedWork W4248060259 @default.
- W2944523909 hasRelatedWork W4287218992 @default.
- W2944523909 hasRelatedWork W4289550811 @default.
- W2944523909 hasRelatedWork W4295792303 @default.
- W2944523909 isParatext "false" @default.
- W2944523909 isRetracted "false" @default.
- W2944523909 magId "2944523909" @default.
- W2944523909 workType "article" @default.