Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944525610> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2944525610 endingPage "56" @default.
- W2944525610 startingPage "47" @default.
- W2944525610 abstract "Automatic License Plate Recognition (ALPR) is an important research topic in the intelligent transportation system and image recognition fields. In this work, we address the problem of car license plate detection using a You Only Look Once (YOLO)-darknet deep learning framework. In this paper, we use YOLO's 7 convolutional layers to detect a single class. The detection method is a sliding-window process. The object is to recognize Taiwan's car license plates. We use an AOLP dataset which contained 6 digit car license plates. The sliding window detects each digit of the license plate, and each window is then detected by a single YOLO framework. The system achieves approximately 98.22% accuracy on license plate detection and 78% accuracy on license plate recognition. The system executes a single detection recognition phase, which needs around 800 ms to 1 s for each input image. The system is also tested with different condition complexities, such as rainy background, darkness and dimness, and different hues and saturation of images." @default.
- W2944525610 created "2019-05-16" @default.
- W2944525610 creator A5039332919 @default.
- W2944525610 creator A5065193429 @default.
- W2944525610 date "2019-07-01" @default.
- W2944525610 modified "2023-10-09" @default.
- W2944525610 title "Automatic License Plate Recognition via sliding-window darknet-YOLO deep learning" @default.
- W2944525610 cites W2024121930 @default.
- W2944525610 cites W2057153941 @default.
- W2944525610 cites W2106073265 @default.
- W2944525610 cites W2135449683 @default.
- W2944525610 cites W2168356304 @default.
- W2944525610 cites W2515602771 @default.
- W2944525610 cites W2534893371 @default.
- W2944525610 cites W2543461915 @default.
- W2944525610 cites W2736499595 @default.
- W2944525610 cites W2772452219 @default.
- W2944525610 cites W2776601846 @default.
- W2944525610 cites W2789643644 @default.
- W2944525610 cites W2792464919 @default.
- W2944525610 cites W2795627216 @default.
- W2944525610 cites W2807436399 @default.
- W2944525610 cites W2892166671 @default.
- W2944525610 cites W2893911272 @default.
- W2944525610 cites W2894558420 @default.
- W2944525610 cites W2962829835 @default.
- W2944525610 cites W4292080463 @default.
- W2944525610 doi "https://doi.org/10.1016/j.imavis.2019.04.007" @default.
- W2944525610 hasPublicationYear "2019" @default.
- W2944525610 type Work @default.
- W2944525610 sameAs 2944525610 @default.
- W2944525610 citedByCount "180" @default.
- W2944525610 countsByYear W29445256102019 @default.
- W2944525610 countsByYear W29445256102020 @default.
- W2944525610 countsByYear W29445256102021 @default.
- W2944525610 countsByYear W29445256102022 @default.
- W2944525610 countsByYear W29445256102023 @default.
- W2944525610 crossrefType "journal-article" @default.
- W2944525610 hasAuthorship W2944525610A5039332919 @default.
- W2944525610 hasAuthorship W2944525610A5065193429 @default.
- W2944525610 hasConcept C102392041 @default.
- W2944525610 hasConcept C108583219 @default.
- W2944525610 hasConcept C111919701 @default.
- W2944525610 hasConcept C126537357 @default.
- W2944525610 hasConcept C153180895 @default.
- W2944525610 hasConcept C154945302 @default.
- W2944525610 hasConcept C2776151529 @default.
- W2944525610 hasConcept C2778751112 @default.
- W2944525610 hasConcept C2780560020 @default.
- W2944525610 hasConcept C31972630 @default.
- W2944525610 hasConcept C41008148 @default.
- W2944525610 hasConceptScore W2944525610C102392041 @default.
- W2944525610 hasConceptScore W2944525610C108583219 @default.
- W2944525610 hasConceptScore W2944525610C111919701 @default.
- W2944525610 hasConceptScore W2944525610C126537357 @default.
- W2944525610 hasConceptScore W2944525610C153180895 @default.
- W2944525610 hasConceptScore W2944525610C154945302 @default.
- W2944525610 hasConceptScore W2944525610C2776151529 @default.
- W2944525610 hasConceptScore W2944525610C2778751112 @default.
- W2944525610 hasConceptScore W2944525610C2780560020 @default.
- W2944525610 hasConceptScore W2944525610C31972630 @default.
- W2944525610 hasConceptScore W2944525610C41008148 @default.
- W2944525610 hasFunder F4320322795 @default.
- W2944525610 hasLocation W29445256101 @default.
- W2944525610 hasOpenAccess W2944525610 @default.
- W2944525610 hasPrimaryLocation W29445256101 @default.
- W2944525610 hasRelatedWork W1583524169 @default.
- W2944525610 hasRelatedWork W1920297912 @default.
- W2944525610 hasRelatedWork W2128129414 @default.
- W2944525610 hasRelatedWork W2839634087 @default.
- W2944525610 hasRelatedWork W2905896016 @default.
- W2944525610 hasRelatedWork W2909609266 @default.
- W2944525610 hasRelatedWork W3014708372 @default.
- W2944525610 hasRelatedWork W3023770025 @default.
- W2944525610 hasRelatedWork W40964945 @default.
- W2944525610 hasRelatedWork W2887824662 @default.
- W2944525610 hasVolume "87" @default.
- W2944525610 isParatext "false" @default.
- W2944525610 isRetracted "false" @default.
- W2944525610 magId "2944525610" @default.
- W2944525610 workType "article" @default.