Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944563820> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2944563820 abstract "Recent years have witnessed the rapid development of human activity recognition (HAR) based on wearable sensor data. One can find many practical applications in this area, especially in the field of health care. Many machine learning algorithms such as Decision Trees, Support Vector Machine, Naive Bayes, K-Nearest Neighbor, and Multilayer Perceptron are successfully used in HAR. Although these methods are fast and easy for implementation, they still have some limitations due to poor performance in a number of situations. In this paper, we propose a novel method based on the ensemble learning to boost the performance of these machine learning methods for HAR." @default.
- W2944563820 created "2019-05-16" @default.
- W2944563820 creator A5023667096 @default.
- W2944563820 creator A5028407427 @default.
- W2944563820 creator A5046560031 @default.
- W2944563820 creator A5067976836 @default.
- W2944563820 creator A5090274747 @default.
- W2944563820 date "2019-07-03" @default.
- W2944563820 modified "2023-10-17" @default.
- W2944563820 title "Wearable Sensor Data Based Human Activity Recognition using Machine Learning: A new approach" @default.
- W2944563820 cites W123295786 @default.
- W2944563820 cites W1857382374 @default.
- W2944563820 cites W1966517947 @default.
- W2944563820 cites W1968670561 @default.
- W2944563820 cites W2002927414 @default.
- W2944563820 cites W2012595795 @default.
- W2944563820 cites W2017634428 @default.
- W2944563820 cites W2025723605 @default.
- W2944563820 cites W2054780155 @default.
- W2944563820 cites W2140785063 @default.
- W2944563820 cites W2145343602 @default.
- W2944563820 cites W2207642662 @default.
- W2944563820 cites W2240326247 @default.
- W2944563820 cites W2296661036 @default.
- W2944563820 cites W2344284192 @default.
- W2944563820 cites W2398688360 @default.
- W2944563820 cites W2736191430 @default.
- W2944563820 cites W2752814855 @default.
- W2944563820 cites W2807963368 @default.
- W2944563820 cites W2892374186 @default.
- W2944563820 cites W2893019778 @default.
- W2944563820 cites W2911964244 @default.
- W2944563820 hasPublicationYear "2019" @default.
- W2944563820 type Work @default.
- W2944563820 sameAs 2944563820 @default.
- W2944563820 citedByCount "0" @default.
- W2944563820 crossrefType "proceedings-article" @default.
- W2944563820 hasAuthorship W2944563820A5023667096 @default.
- W2944563820 hasAuthorship W2944563820A5028407427 @default.
- W2944563820 hasAuthorship W2944563820A5046560031 @default.
- W2944563820 hasAuthorship W2944563820A5067976836 @default.
- W2944563820 hasAuthorship W2944563820A5090274747 @default.
- W2944563820 hasBestOaLocation W29445638201 @default.
- W2944563820 hasConcept C119857082 @default.
- W2944563820 hasConcept C121687571 @default.
- W2944563820 hasConcept C12267149 @default.
- W2944563820 hasConcept C149635348 @default.
- W2944563820 hasConcept C150594956 @default.
- W2944563820 hasConcept C154945302 @default.
- W2944563820 hasConcept C179717631 @default.
- W2944563820 hasConcept C202444582 @default.
- W2944563820 hasConcept C33923547 @default.
- W2944563820 hasConcept C41008148 @default.
- W2944563820 hasConcept C50644808 @default.
- W2944563820 hasConcept C52001869 @default.
- W2944563820 hasConcept C60908668 @default.
- W2944563820 hasConcept C84525736 @default.
- W2944563820 hasConcept C9652623 @default.
- W2944563820 hasConceptScore W2944563820C119857082 @default.
- W2944563820 hasConceptScore W2944563820C121687571 @default.
- W2944563820 hasConceptScore W2944563820C12267149 @default.
- W2944563820 hasConceptScore W2944563820C149635348 @default.
- W2944563820 hasConceptScore W2944563820C150594956 @default.
- W2944563820 hasConceptScore W2944563820C154945302 @default.
- W2944563820 hasConceptScore W2944563820C179717631 @default.
- W2944563820 hasConceptScore W2944563820C202444582 @default.
- W2944563820 hasConceptScore W2944563820C33923547 @default.
- W2944563820 hasConceptScore W2944563820C41008148 @default.
- W2944563820 hasConceptScore W2944563820C50644808 @default.
- W2944563820 hasConceptScore W2944563820C52001869 @default.
- W2944563820 hasConceptScore W2944563820C60908668 @default.
- W2944563820 hasConceptScore W2944563820C84525736 @default.
- W2944563820 hasConceptScore W2944563820C9652623 @default.
- W2944563820 hasLocation W29445638201 @default.
- W2944563820 hasLocation W29445638202 @default.
- W2944563820 hasOpenAccess W2944563820 @default.
- W2944563820 hasPrimaryLocation W29445638201 @default.
- W2944563820 hasRelatedWork W2940336242 @default.
- W2944563820 hasRelatedWork W2984537336 @default.
- W2944563820 hasRelatedWork W3168994312 @default.
- W2944563820 hasRelatedWork W3185179407 @default.
- W2944563820 hasRelatedWork W3186233728 @default.
- W2944563820 hasRelatedWork W3202148033 @default.
- W2944563820 hasRelatedWork W4200196661 @default.
- W2944563820 hasRelatedWork W4281994957 @default.
- W2944563820 hasRelatedWork W4312339038 @default.
- W2944563820 hasRelatedWork W4362711840 @default.
- W2944563820 isParatext "false" @default.
- W2944563820 isRetracted "false" @default.
- W2944563820 magId "2944563820" @default.
- W2944563820 workType "article" @default.