Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944597265> ?p ?o ?g. }
- W2944597265 endingPage "1106" @default.
- W2944597265 startingPage "1097" @default.
- W2944597265 abstract "An increasing number of organizations choose distributed green data centers (DGDCs) and use their infrastructure resources to deploy and manage multiple applications that flexibly provide services to users around the world in a cost-effective way. The dramatic growth of tasks makes it highly challenging to maximize the total profit of a DGDC provider in a market, where the revenue, price of power grid, solar radiation, wind speed, the maximum amount of energy, on-site air density, and the number of servers in DGDCs all vary with geographical sites. Different from existing studies, this paper designs a profit-sensitive spatial scheduling (PS3) approach to maximize the total profit of a DGDC provider by smartly scheduling all tasks of multiple applications to meet their response time constraints. PS3 can well utilize such spatial diversity of the above factors. In each time slot, the profit maximization for the DGDC provider is formulated as a constrained nonlinear program and solved by the proposed genetic-simulated-annealing-based particle swarm optimization. Real-life trace-driven simulation experiments demonstrate that PS3 realizes higher total profit and throughput than two typical task scheduling methods. Note to Practitioners-This paper investigates the profit maximization problem for a DGDC provider, while the average response time of all arriving tasks of each application is within their corresponding constraint. Existing task scheduling approaches fail to jointly consider the spatial variations in many factors, including the revenue, price of power grid, solar radiation, wind speed, the maximum amount of energy, on-site air density, and the number of servers in DGDCs. Consequently, they cannot schedule all tasks of multiple applications within their response time constraints in a profit-sensitive way. In this paper, a profit-sensitive spatial scheduling (PS3) method that tackles the drawbacks of previous approaches is presented. It is achieved by adopting a proposed genetic-simulated-annealing-based particle swarm optimization algorithm that solves a constrained nonlinear program. Simulation experiments prove that compared with two typical scheduling approaches, it increases the total profit and throughput. It can be readily realized and incorporated into real-life industrial DGDCs. The future work should improve the proposed method by analyzing the indeterminacy in green energy and the uncertainty in tasks." @default.
- W2944597265 created "2019-05-16" @default.
- W2944597265 creator A5057935426 @default.
- W2944597265 creator A5070546858 @default.
- W2944597265 creator A5081318069 @default.
- W2944597265 date "2020-07-01" @default.
- W2944597265 modified "2023-10-15" @default.
- W2944597265 title "Profit-Sensitive Spatial Scheduling of Multi-Application Tasks in Distributed Green Clouds" @default.
- W2944597265 cites W1811233877 @default.
- W2944597265 cites W1996600352 @default.
- W2944597265 cites W2000899289 @default.
- W2944597265 cites W2012115555 @default.
- W2944597265 cites W2013670858 @default.
- W2944597265 cites W2021689699 @default.
- W2944597265 cites W2043103855 @default.
- W2944597265 cites W2043893178 @default.
- W2944597265 cites W2087707076 @default.
- W2944597265 cites W2114296561 @default.
- W2944597265 cites W2169466806 @default.
- W2944597265 cites W2218521673 @default.
- W2944597265 cites W2243718034 @default.
- W2944597265 cites W2278138779 @default.
- W2944597265 cites W2318924727 @default.
- W2944597265 cites W2319104719 @default.
- W2944597265 cites W2322856517 @default.
- W2944597265 cites W2326293101 @default.
- W2944597265 cites W2339997602 @default.
- W2944597265 cites W2343556076 @default.
- W2944597265 cites W2343567611 @default.
- W2944597265 cites W2464889299 @default.
- W2944597265 cites W2487267831 @default.
- W2944597265 cites W2492250943 @default.
- W2944597265 cites W2512689701 @default.
- W2944597265 cites W2513795936 @default.
- W2944597265 cites W2522871288 @default.
- W2944597265 cites W2524194345 @default.
- W2944597265 cites W2526695150 @default.
- W2944597265 cites W2535366121 @default.
- W2944597265 cites W2546477115 @default.
- W2944597265 cites W2552533918 @default.
- W2944597265 cites W2612606128 @default.
- W2944597265 cites W2621115566 @default.
- W2944597265 cites W2765921558 @default.
- W2944597265 cites W2769557912 @default.
- W2944597265 cites W2782986672 @default.
- W2944597265 cites W2786083206 @default.
- W2944597265 cites W2799827709 @default.
- W2944597265 cites W2805172798 @default.
- W2944597265 cites W2806832624 @default.
- W2944597265 cites W2998113761 @default.
- W2944597265 cites W3106321396 @default.
- W2944597265 cites W4229942708 @default.
- W2944597265 doi "https://doi.org/10.1109/tase.2019.2909866" @default.
- W2944597265 hasPublicationYear "2020" @default.
- W2944597265 type Work @default.
- W2944597265 sameAs 2944597265 @default.
- W2944597265 citedByCount "27" @default.
- W2944597265 countsByYear W29445972652020 @default.
- W2944597265 countsByYear W29445972652021 @default.
- W2944597265 countsByYear W29445972652022 @default.
- W2944597265 countsByYear W29445972652023 @default.
- W2944597265 crossrefType "journal-article" @default.
- W2944597265 hasAuthorship W2944597265A5057935426 @default.
- W2944597265 hasAuthorship W2944597265A5070546858 @default.
- W2944597265 hasAuthorship W2944597265A5081318069 @default.
- W2944597265 hasConcept C11413529 @default.
- W2944597265 hasConcept C120314980 @default.
- W2944597265 hasConcept C121955636 @default.
- W2944597265 hasConcept C126255220 @default.
- W2944597265 hasConcept C127413603 @default.
- W2944597265 hasConcept C162324750 @default.
- W2944597265 hasConcept C175444787 @default.
- W2944597265 hasConcept C181622380 @default.
- W2944597265 hasConcept C187691185 @default.
- W2944597265 hasConcept C195487862 @default.
- W2944597265 hasConcept C206729178 @default.
- W2944597265 hasConcept C2524010 @default.
- W2944597265 hasConcept C2776330181 @default.
- W2944597265 hasConcept C2777780509 @default.
- W2944597265 hasConcept C31258907 @default.
- W2944597265 hasConcept C33923547 @default.
- W2944597265 hasConcept C41008148 @default.
- W2944597265 hasConcept C42475967 @default.
- W2944597265 hasConcept C79403827 @default.
- W2944597265 hasConcept C85617194 @default.
- W2944597265 hasConcept C93996380 @default.
- W2944597265 hasConceptScore W2944597265C11413529 @default.
- W2944597265 hasConceptScore W2944597265C120314980 @default.
- W2944597265 hasConceptScore W2944597265C121955636 @default.
- W2944597265 hasConceptScore W2944597265C126255220 @default.
- W2944597265 hasConceptScore W2944597265C127413603 @default.
- W2944597265 hasConceptScore W2944597265C162324750 @default.
- W2944597265 hasConceptScore W2944597265C175444787 @default.
- W2944597265 hasConceptScore W2944597265C181622380 @default.
- W2944597265 hasConceptScore W2944597265C187691185 @default.
- W2944597265 hasConceptScore W2944597265C195487862 @default.
- W2944597265 hasConceptScore W2944597265C206729178 @default.
- W2944597265 hasConceptScore W2944597265C2524010 @default.