Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944636526> ?p ?o ?g. }
- W2944636526 abstract "The increasing amounts of genomics data have helped in the understanding of the molecular dynamics of complex systems such as plant and animal diseases. However, transcriptional regulation, although playing a central role in the decision-making process of cellular systems, is still poorly understood. In this study, we linked expression data with mathematical models to infer gene regulatory networks (GRN). We present a simple yet effective method to estimate transcription factors' GRNs from transcriptional data.We defined interactions between pairs of genes (edges in the GRN) as the partial mutual information between these genes that takes into account time and possible lags in time from one gene in relation to another. We call this method Gene Regulatory Networks on Transfer Entropy (GRNTE) and it corresponds to Granger causality for Gaussian variables in an autoregressive model. To evaluate the reconstruction accuracy of our method, we generated several sub-networks from the GRN of the eukaryotic yeast model, Saccharomyces cerevisae. Then, we applied this method using experimental data of the plant pathogen Phytophthora infestans. We evaluated the transcriptional expression levels of 48 transcription factors of P. infestans during its interaction with one moderately resistant and one susceptible cultivar of yellow potato (Solanum tuberosum group Phureja), using RT-qPCR. With these data, we reconstructed the regulatory network of P. infestans during its interaction with these hosts.We first evaluated the performance of our method, based on the transfer entropy (GRNTE), on eukaryotic datasets from the GRNs of the yeast S. cerevisae. Results suggest that GRNTE is comparable with the state-of-the-art methods when the parameters for edge detection are properly tuned. In the case of P. infestans, most of the genes considered in this study, showed a significant change in expression from the onset of the interaction (0 h post inoculum - hpi) to the later time-points post inoculation. Hierarchical clustering of the expression data discriminated two distinct periods during the infection: from 12 to 36 hpi and from 48 to 72 hpi for both the moderately resistant and susceptible cultivars. These distinct periods could be associated with two phases of the life cycle of the pathogen when infecting the host plant: the biotrophic and necrotrophic phases.Here we presented an algorithmic solution to the problem of network reconstruction in time series data. This analytical perspective makes use of the dynamic nature of time series data as it relates to intrinsically dynamic processes such as transcription regulation, were multiple elements of the cell (e.g., transcription factors) act simultaneously and change over time. We applied the algorithm to study the regulatory network of P. infestans during its interaction with two hosts which differ in their level of resistance to the pathogen. Although the gene expression analysis did not show differences between the two hosts, the results of the GRN analyses evidenced rewiring of the genes' interactions according to the resistance level of the host. This suggests that different regulatory processes are activated in response to different environmental cues. Applications of our methodology showed that it could reliably predict where to place edges in the transcriptional networks and sub-networks. The experimental approach used here can help provide insights on the biological role of these interactions on complex processes such as pathogenicity. The code used is available at https://github.com/jccastrog/GRNTE under GNU general public license 3.0." @default.
- W2944636526 created "2019-05-16" @default.
- W2944636526 creator A5037369019 @default.
- W2944636526 creator A5054177923 @default.
- W2944636526 creator A5054338662 @default.
- W2944636526 creator A5063392274 @default.
- W2944636526 creator A5080527729 @default.
- W2944636526 creator A5080964153 @default.
- W2944636526 creator A5081632559 @default.
- W2944636526 creator A5086253816 @default.
- W2944636526 creator A5088590069 @default.
- W2944636526 date "2019-04-09" @default.
- W2944636526 modified "2023-09-30" @default.
- W2944636526 title "Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans" @default.
- W2944636526 cites W1572779288 @default.
- W2944636526 cites W1670974005 @default.
- W2944636526 cites W1877666302 @default.
- W2944636526 cites W1967904001 @default.
- W2944636526 cites W1971421925 @default.
- W2944636526 cites W1971496051 @default.
- W2944636526 cites W1977035425 @default.
- W2944636526 cites W1981509058 @default.
- W2944636526 cites W1981949323 @default.
- W2944636526 cites W1986640433 @default.
- W2944636526 cites W1995996823 @default.
- W2944636526 cites W1996459231 @default.
- W2944636526 cites W2002850151 @default.
- W2944636526 cites W2007507582 @default.
- W2944636526 cites W2012139697 @default.
- W2944636526 cites W2013326913 @default.
- W2944636526 cites W2023348596 @default.
- W2944636526 cites W2026066306 @default.
- W2944636526 cites W2027607571 @default.
- W2944636526 cites W2038149940 @default.
- W2944636526 cites W2041782669 @default.
- W2944636526 cites W2058818256 @default.
- W2944636526 cites W2069898971 @default.
- W2944636526 cites W2070672503 @default.
- W2944636526 cites W2076513103 @default.
- W2944636526 cites W2077941487 @default.
- W2944636526 cites W2079656335 @default.
- W2944636526 cites W2101580881 @default.
- W2944636526 cites W2103480658 @default.
- W2944636526 cites W2106555403 @default.
- W2944636526 cites W2108244474 @default.
- W2944636526 cites W2108421561 @default.
- W2944636526 cites W2109384743 @default.
- W2944636526 cites W2115254293 @default.
- W2944636526 cites W2124637492 @default.
- W2944636526 cites W2124641973 @default.
- W2944636526 cites W2126602684 @default.
- W2944636526 cites W2131463690 @default.
- W2944636526 cites W2131496416 @default.
- W2944636526 cites W2131681506 @default.
- W2944636526 cites W2131706188 @default.
- W2944636526 cites W2137474062 @default.
- W2944636526 cites W2139997707 @default.
- W2944636526 cites W2141408320 @default.
- W2944636526 cites W2149350210 @default.
- W2944636526 cites W2150271534 @default.
- W2944636526 cites W2151624979 @default.
- W2944636526 cites W2151936673 @default.
- W2944636526 cites W2154053567 @default.
- W2944636526 cites W2154411205 @default.
- W2944636526 cites W2155130938 @default.
- W2944636526 cites W2160619010 @default.
- W2944636526 cites W2161922735 @default.
- W2944636526 cites W2163298865 @default.
- W2944636526 cites W2163480486 @default.
- W2944636526 cites W2164727176 @default.
- W2944636526 cites W2166642834 @default.
- W2944636526 cites W2170505850 @default.
- W2944636526 cites W2170593005 @default.
- W2944636526 cites W2327972292 @default.
- W2944636526 cites W276490198 @default.
- W2944636526 cites W2792581694 @default.
- W2944636526 cites W2803928488 @default.
- W2944636526 cites W3099289621 @default.
- W2944636526 cites W4235760722 @default.
- W2944636526 doi "https://doi.org/10.1186/s12976-019-0103-7" @default.
- W2944636526 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6454757" @default.
- W2944636526 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30961611" @default.
- W2944636526 hasPublicationYear "2019" @default.
- W2944636526 type Work @default.
- W2944636526 sameAs 2944636526 @default.
- W2944636526 citedByCount "19" @default.
- W2944636526 countsByYear W29446365262018 @default.
- W2944636526 countsByYear W29446365262020 @default.
- W2944636526 countsByYear W29446365262021 @default.
- W2944636526 countsByYear W29446365262022 @default.
- W2944636526 countsByYear W29446365262023 @default.
- W2944636526 crossrefType "journal-article" @default.
- W2944636526 hasAuthorship W2944636526A5037369019 @default.
- W2944636526 hasAuthorship W2944636526A5054177923 @default.
- W2944636526 hasAuthorship W2944636526A5054338662 @default.
- W2944636526 hasAuthorship W2944636526A5063392274 @default.
- W2944636526 hasAuthorship W2944636526A5080527729 @default.
- W2944636526 hasAuthorship W2944636526A5080964153 @default.
- W2944636526 hasAuthorship W2944636526A5081632559 @default.
- W2944636526 hasAuthorship W2944636526A5086253816 @default.