Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944736082> ?p ?o ?g. }
- W2944736082 abstract "We introduce Pixel-aligned Implicit Function (PIFu), a highly effective implicit representation that locally aligns pixels of 2D images with the global context of their corresponding 3D object. Using PIFu, we propose an end-to-end deep learning method for digitizing highly detailed clothed humans that can infer both 3D surface and texture from a single image, and optionally, multiple input images. Highly intricate shapes, such as hairstyles, clothing, as well as their variations and deformations can be digitized in a unified way. Compared to existing representations used for 3D deep learning, PIFu can produce high-resolution surfaces including largely unseen regions such as the back of a person. In particular, it is memory efficient unlike the voxel representation, can handle arbitrary topology, and the resulting surface is spatially aligned with the input image. Furthermore, while previous techniques are designed to process either a single image or multiple views, PIFu extends naturally to arbitrary number of views. We demonstrate high-resolution and robust reconstructions on real world images from the DeepFashion dataset, which contains a variety of challenging clothing types. Our method achieves state-of-the-art performance on a public benchmark and outperforms the prior work for clothed human digitization from a single image." @default.
- W2944736082 created "2019-05-16" @default.
- W2944736082 creator A5007091110 @default.
- W2944736082 creator A5019560977 @default.
- W2944736082 creator A5031491881 @default.
- W2944736082 creator A5040277267 @default.
- W2944736082 creator A5055513718 @default.
- W2944736082 creator A5083427215 @default.
- W2944736082 date "2019-05-13" @default.
- W2944736082 modified "2023-09-26" @default.
- W2944736082 title "PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization" @default.
- W2944736082 cites W1517656524 @default.
- W2944736082 cites W1593593811 @default.
- W2944736082 cites W1686810756 @default.
- W2944736082 cites W1967554269 @default.
- W2944736082 cites W1989191365 @default.
- W2944736082 cites W2040436296 @default.
- W2944736082 cites W2046931544 @default.
- W2944736082 cites W2058676365 @default.
- W2944736082 cites W2075834168 @default.
- W2944736082 cites W2082211440 @default.
- W2944736082 cites W2108598243 @default.
- W2944736082 cites W2110434318 @default.
- W2944736082 cites W2117888987 @default.
- W2944736082 cites W2119781527 @default.
- W2944736082 cites W2122578066 @default.
- W2944736082 cites W2124351162 @default.
- W2944736082 cites W2129404737 @default.
- W2944736082 cites W2134484928 @default.
- W2944736082 cites W2136391815 @default.
- W2944736082 cites W2142540472 @default.
- W2944736082 cites W2145399221 @default.
- W2944736082 cites W2164369380 @default.
- W2944736082 cites W2167085613 @default.
- W2944736082 cites W2190691619 @default.
- W2944736082 cites W2194775991 @default.
- W2944736082 cites W2229412420 @default.
- W2944736082 cites W2307770531 @default.
- W2944736082 cites W2331128040 @default.
- W2944736082 cites W2342277278 @default.
- W2944736082 cites W2348664362 @default.
- W2944736082 cites W2395611524 @default.
- W2944736082 cites W2471768434 @default.
- W2944736082 cites W2483862638 @default.
- W2944736082 cites W2518246072 @default.
- W2944736082 cites W2545173102 @default.
- W2944736082 cites W2573098616 @default.
- W2944736082 cites W2576289912 @default.
- W2944736082 cites W2593915460 @default.
- W2944736082 cites W2596210417 @default.
- W2944736082 cites W2598591334 @default.
- W2944736082 cites W2737009841 @default.
- W2944736082 cites W2737762407 @default.
- W2944736082 cites W2753872511 @default.
- W2944736082 cites W2793768642 @default.
- W2944736082 cites W2795783309 @default.
- W2944736082 cites W2797515701 @default.
- W2944736082 cites W2798637590 @default.
- W2944736082 cites W2811052594 @default.
- W2944736082 cites W2811169695 @default.
- W2944736082 cites W2887358179 @default.
- W2944736082 cites W2890335171 @default.
- W2944736082 cites W2890816492 @default.
- W2944736082 cites W2894865236 @default.
- W2944736082 cites W2895191479 @default.
- W2944736082 cites W2902814024 @default.
- W2944736082 cites W2904383797 @default.
- W2944736082 cites W2909750748 @default.
- W2944736082 cites W2921745007 @default.
- W2944736082 cites W2952281406 @default.
- W2944736082 cites W2962754033 @default.
- W2944736082 cites W2962793481 @default.
- W2944736082 cites W2962849139 @default.
- W2944736082 cites W2962885944 @default.
- W2944736082 cites W2962921964 @default.
- W2944736082 cites W2963355540 @default.
- W2944736082 cites W2963420272 @default.
- W2944736082 cites W2963739349 @default.
- W2944736082 cites W2963850211 @default.
- W2944736082 cites W2963876278 @default.
- W2944736082 cites W2963966978 @default.
- W2944736082 cites W2963995996 @default.
- W2944736082 cites W2964304707 @default.
- W2944736082 cites W2964309882 @default.
- W2944736082 cites W2970899367 @default.
- W2944736082 cites W3102132650 @default.
- W2944736082 doi "https://doi.org/10.48550/arxiv.1905.05172" @default.
- W2944736082 hasPublicationYear "2019" @default.
- W2944736082 type Work @default.
- W2944736082 sameAs 2944736082 @default.
- W2944736082 citedByCount "61" @default.
- W2944736082 countsByYear W29447360822018 @default.
- W2944736082 countsByYear W29447360822019 @default.
- W2944736082 countsByYear W29447360822020 @default.
- W2944736082 countsByYear W29447360822021 @default.
- W2944736082 crossrefType "posted-content" @default.
- W2944736082 hasAuthorship W2944736082A5007091110 @default.
- W2944736082 hasAuthorship W2944736082A5019560977 @default.
- W2944736082 hasAuthorship W2944736082A5031491881 @default.
- W2944736082 hasAuthorship W2944736082A5040277267 @default.