Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944778514> ?p ?o ?g. }
- W2944778514 endingPage "5271" @default.
- W2944778514 startingPage "5263" @default.
- W2944778514 abstract "The Euclid telescope, due for launch in 2021, will perform an imaging and slitless spectroscopy survey over half the sky, to map baryon wiggles and weak lensing. During the survey Euclid is expected to resolve 100,000 strong gravitational lens systems. This is ideal to find rare lens configurations, provided they can be identified reliably and on a reasonable timescale. For this reason we have developed a Convolutional Neural Network (CNN) that can be used to identify images containing lensing systems. CNNs have already been used for image and digit classification as well as being used in astronomy for star-galaxy classification. Here our CNN is trained and tested on Euclid-like and KiDS-like simulations from the Euclid Strong Lensing Group, successfully classifying 77% of lenses, with an area under the ROC curve of up to 0.96. Our CNN also attempts to classify the lenses in COSMOS HST F814W-band images. After convolution to the Euclid resolution, we find we can recover most systems that are identifiable by eye. The Python code is available on Github." @default.
- W2944778514 created "2019-05-16" @default.
- W2944778514 creator A5014926556 @default.
- W2944778514 creator A5057205994 @default.
- W2944778514 creator A5063589119 @default.
- W2944778514 date "2019-05-17" @default.
- W2944778514 modified "2023-10-05" @default.
- W2944778514 title "Using convolutional neural networks to identify gravitational lenses in astronomical images" @default.
- W2944778514 cites W1666137371 @default.
- W2944778514 cites W1793679032 @default.
- W2944778514 cites W1924089270 @default.
- W2944778514 cites W1925373677 @default.
- W2944778514 cites W1973825074 @default.
- W2944778514 cites W1982452454 @default.
- W2944778514 cites W1996610213 @default.
- W2944778514 cites W1998132453 @default.
- W2944778514 cites W1999491938 @default.
- W2944778514 cites W2018462457 @default.
- W2944778514 cites W2019365096 @default.
- W2944778514 cites W2019453612 @default.
- W2944778514 cites W2036247675 @default.
- W2944778514 cites W2042504885 @default.
- W2944778514 cites W2044738244 @default.
- W2944778514 cites W2052247350 @default.
- W2944778514 cites W2052333057 @default.
- W2944778514 cites W2054211072 @default.
- W2944778514 cites W2074795523 @default.
- W2944778514 cites W2076697735 @default.
- W2944778514 cites W2091845343 @default.
- W2944778514 cites W2099712945 @default.
- W2944778514 cites W2108523255 @default.
- W2944778514 cites W2112960411 @default.
- W2944778514 cites W2117514272 @default.
- W2944778514 cites W2127101430 @default.
- W2944778514 cites W2131512923 @default.
- W2944778514 cites W2134079305 @default.
- W2944778514 cites W2134538193 @default.
- W2944778514 cites W2159528023 @default.
- W2944778514 cites W2168631894 @default.
- W2944778514 cites W2261689926 @default.
- W2944778514 cites W2593003715 @default.
- W2944778514 cites W2596078270 @default.
- W2944778514 cites W2650791182 @default.
- W2944778514 cites W2726539084 @default.
- W2944778514 cites W2907489335 @default.
- W2944778514 cites W2919115771 @default.
- W2944778514 cites W3098827579 @default.
- W2944778514 cites W3098832119 @default.
- W2944778514 cites W3105475347 @default.
- W2944778514 cites W4298860160 @default.
- W2944778514 doi "https://doi.org/10.1093/mnras/stz1288" @default.
- W2944778514 hasPublicationYear "2019" @default.
- W2944778514 type Work @default.
- W2944778514 sameAs 2944778514 @default.
- W2944778514 citedByCount "39" @default.
- W2944778514 countsByYear W29447785142019 @default.
- W2944778514 countsByYear W29447785142020 @default.
- W2944778514 countsByYear W29447785142021 @default.
- W2944778514 countsByYear W29447785142022 @default.
- W2944778514 countsByYear W29447785142023 @default.
- W2944778514 crossrefType "journal-article" @default.
- W2944778514 hasAuthorship W2944778514A5014926556 @default.
- W2944778514 hasAuthorship W2944778514A5057205994 @default.
- W2944778514 hasAuthorship W2944778514A5063589119 @default.
- W2944778514 hasBestOaLocation W29447785142 @default.
- W2944778514 hasConcept C120665830 @default.
- W2944778514 hasConcept C121332964 @default.
- W2944778514 hasConcept C1276947 @default.
- W2944778514 hasConcept C15336307 @default.
- W2944778514 hasConcept C154945302 @default.
- W2944778514 hasConcept C190670322 @default.
- W2944778514 hasConcept C2780848835 @default.
- W2944778514 hasConcept C2780974285 @default.
- W2944778514 hasConcept C33024259 @default.
- W2944778514 hasConcept C38437897 @default.
- W2944778514 hasConcept C41008148 @default.
- W2944778514 hasConcept C44870925 @default.
- W2944778514 hasConcept C68498078 @default.
- W2944778514 hasConcept C73329638 @default.
- W2944778514 hasConcept C81363708 @default.
- W2944778514 hasConcept C98444146 @default.
- W2944778514 hasConceptScore W2944778514C120665830 @default.
- W2944778514 hasConceptScore W2944778514C121332964 @default.
- W2944778514 hasConceptScore W2944778514C1276947 @default.
- W2944778514 hasConceptScore W2944778514C15336307 @default.
- W2944778514 hasConceptScore W2944778514C154945302 @default.
- W2944778514 hasConceptScore W2944778514C190670322 @default.
- W2944778514 hasConceptScore W2944778514C2780848835 @default.
- W2944778514 hasConceptScore W2944778514C2780974285 @default.
- W2944778514 hasConceptScore W2944778514C33024259 @default.
- W2944778514 hasConceptScore W2944778514C38437897 @default.
- W2944778514 hasConceptScore W2944778514C41008148 @default.
- W2944778514 hasConceptScore W2944778514C44870925 @default.
- W2944778514 hasConceptScore W2944778514C68498078 @default.
- W2944778514 hasConceptScore W2944778514C73329638 @default.
- W2944778514 hasConceptScore W2944778514C81363708 @default.
- W2944778514 hasConceptScore W2944778514C98444146 @default.
- W2944778514 hasFunder F4320334632 @default.