Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944820080> ?p ?o ?g. }
- W2944820080 abstract "We study the bulk and boundary properties of fragile topological insulators (TIs) protected by inversion symmetry, mostly focusing on the class A of the Altland-Zirnbauer classification. First, we propose an efficient method for diagnosing fragile band topology by using the symmetry data in momentum space. Using this method, we show that among all the possible parity configurations of inversion-symmetric insulators, at least 17 percent of them have fragile topology in 2D while fragile TIs are less than 3 percent in 3D. Second, we study the bulk-boundary correspondence of fragile TIs protected by inversion symmetry. In particular, we generalize the notion of $d$-dimensional ($d$D) $k$th-order TIs, which is normally defined for $0<kle d$, to the cases with $k>d$, and show that they all have fragile topology. In terms of the Dirac Hamiltonian, a $d$D $k$th-order TI has $(k-1)$ boundary mass terms. We show that a minimal fragile TI with the filling anomaly can be considered as the $d$D $(d+1)$th-order TI, and all the other $d$D $k$th-order TIs with $k>(d+1)$ can be constructed by stacking $d$D $(d+1)$th-order TIs. Although $d$D $(d+1)$th-order TIs have no in-gap states, the boundary mass terms carry an odd winding number along the boundary, which induces localized charges on the boundary at the positions where the boundary mass terms change abruptly. In the cases with $k>(d+1)$, we show that the net parity of the system with boundaries can distinguish topological insulators and trivial insulators. Also, by studying the (nested) Wilson loop spectra, we determine the minimal number of bands to resolve the Wannier obstruction, which is consistent with the prediction from our diagnosis method of fragile topology. Finally, we show that a $(d+1)$D $(k-1)$th-order TI can be obtained by an adiabatic pumping of $d$D $k$th-order TI, which generalizes the previous study of the 2D 3rd-order TI." @default.
- W2944820080 created "2019-05-29" @default.
- W2944820080 creator A5036076074 @default.
- W2944820080 creator A5076686983 @default.
- W2944820080 creator A5083635049 @default.
- W2944820080 date "2019-11-18" @default.
- W2944820080 modified "2023-10-11" @default.
- W2944820080 title "Fragile topology protected by inversion symmetry: Diagnosis, bulk-boundary correspondence, and Wilson loop" @default.
- W2944820080 cites W1501955150 @default.
- W2944820080 cites W1528946541 @default.
- W2944820080 cites W1529147870 @default.
- W2944820080 cites W1800177308 @default.
- W2944820080 cites W1924841494 @default.
- W2944820080 cites W1973490797 @default.
- W2944820080 cites W1991577814 @default.
- W2944820080 cites W1992748556 @default.
- W2944820080 cites W2003397144 @default.
- W2944820080 cites W2003510227 @default.
- W2944820080 cites W2019698797 @default.
- W2944820080 cites W2029258203 @default.
- W2944820080 cites W2031028572 @default.
- W2944820080 cites W2035023904 @default.
- W2944820080 cites W2037092937 @default.
- W2944820080 cites W2041847669 @default.
- W2944820080 cites W2042938036 @default.
- W2944820080 cites W2050874073 @default.
- W2944820080 cites W2067280161 @default.
- W2944820080 cites W2072703702 @default.
- W2944820080 cites W2074159413 @default.
- W2944820080 cites W2078822726 @default.
- W2944820080 cites W2085158440 @default.
- W2944820080 cites W2088198211 @default.
- W2944820080 cites W2102074887 @default.
- W2944820080 cites W2121813164 @default.
- W2944820080 cites W2127594490 @default.
- W2944820080 cites W2139281352 @default.
- W2944820080 cites W2337753616 @default.
- W2944820080 cites W2342118949 @default.
- W2944820080 cites W2342827313 @default.
- W2944820080 cites W2507843064 @default.
- W2944820080 cites W2540805825 @default.
- W2944820080 cites W2584585862 @default.
- W2944820080 cites W2588362431 @default.
- W2944820080 cites W2595688496 @default.
- W2944820080 cites W2618138110 @default.
- W2944820080 cites W2730453049 @default.
- W2944820080 cites W2743972233 @default.
- W2944820080 cites W2745740700 @default.
- W2944820080 cites W2746713678 @default.
- W2944820080 cites W2750111109 @default.
- W2944820080 cites W2755974218 @default.
- W2944820080 cites W2757174636 @default.
- W2944820080 cites W2757205558 @default.
- W2944820080 cites W2771807659 @default.
- W2944820080 cites W2773947053 @default.
- W2944820080 cites W2785331841 @default.
- W2944820080 cites W2785766218 @default.
- W2944820080 cites W2787634402 @default.
- W2944820080 cites W2794874689 @default.
- W2944820080 cites W2795999364 @default.
- W2944820080 cites W2797301063 @default.
- W2944820080 cites W2799355682 @default.
- W2944820080 cites W2810091869 @default.
- W2944820080 cites W2810585930 @default.
- W2944820080 cites W2885419329 @default.
- W2944820080 cites W2886074776 @default.
- W2944820080 cites W2886358572 @default.
- W2944820080 cites W2886583066 @default.
- W2944820080 cites W2889025743 @default.
- W2944820080 cites W2891496999 @default.
- W2944820080 cites W2898913837 @default.
- W2944820080 cites W2900344566 @default.
- W2944820080 cites W2912554098 @default.
- W2944820080 cites W2940776262 @default.
- W2944820080 cites W2950016085 @default.
- W2944820080 cites W2950100175 @default.
- W2944820080 cites W2952781775 @default.
- W2944820080 cites W2964320881 @default.
- W2944820080 cites W2995909929 @default.
- W2944820080 cites W3099293803 @default.
- W2944820080 cites W3100100923 @default.
- W2944820080 cites W3102629253 @default.
- W2944820080 cites W3103618868 @default.
- W2944820080 cites W3105738381 @default.
- W2944820080 cites W3121845213 @default.
- W2944820080 cites W3121964595 @default.
- W2944820080 cites W3121974050 @default.
- W2944820080 cites W4210453612 @default.
- W2944820080 doi "https://doi.org/10.1103/physrevb.100.205126" @default.
- W2944820080 hasPublicationYear "2019" @default.
- W2944820080 type Work @default.
- W2944820080 sameAs 2944820080 @default.
- W2944820080 citedByCount "57" @default.
- W2944820080 countsByYear W29448200802019 @default.
- W2944820080 countsByYear W29448200802020 @default.
- W2944820080 countsByYear W29448200802021 @default.
- W2944820080 countsByYear W29448200802022 @default.
- W2944820080 countsByYear W29448200802023 @default.
- W2944820080 crossrefType "journal-article" @default.
- W2944820080 hasAuthorship W2944820080A5036076074 @default.