Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944885770> ?p ?o ?g. }
- W2944885770 endingPage "2818" @default.
- W2944885770 startingPage "2764" @default.
- W2944885770 abstract "Software metrics play a significant role in many areas in the life-cycle of software including forecasting defects and foretelling stories regarding maintenance, cost, etc. through predictive analysis. Many studies have found code metrics correlated to each other at such a high level that such correlated code metrics are considered redundant, which implies it is enough to keep track of a single metric from a list of highly correlated metrics. Software is developed incrementally over a period. Traditionally, code metrics are measured cumulatively as cumulative sum or running sum. When a code metric is measured based on the values from individual revisions or commits without consolidating values from past revisions, indicating the natural development of software, this study identifies such a type of measure as organic. Density and average are two other ways of measuring metrics. This empirical study focuses on whether measurement types influence correlations of code metrics. To investigate the objective, this empirical study has collected 24 code metrics classified into four categories, according to the measurement types of the metrics, from 11,874 software revisions (i.e., commits) of 21 open source projects from eight well-known organizations. Kendall’s τ-B is used for computing correlations. To determine whether there is a significant difference between cumulative and organic metrics, Mann-Whitney U test, Wilcoxon signed rank test, and paired-samples sign test are performed. The cumulative metrics are found to be highly correlated to each other with an average coefficient of 0.79. For corresponding organic metrics, it is 0.49. When individual correlation coefficients between these two measure types are compared, correlations between organic metrics are found to be significantly lower (with p < 0.01) than cumulative metrics. Our results indicate that the cumulative nature of metrics makes them highly correlated, implying cumulative measurement is a major source of collinearity between cumulative metrics. Another interesting observation is that correlations between metrics from different categories are weak. Results of this study reveal that measurement types may have a significant impact on the correlations of code metrics and that transforming metrics into a different type can give us metrics with low collinearity. These findings provide us a simple understanding how feature transformation to a different measurement type can produce new non-collinear input features for predictive models." @default.
- W2944885770 created "2019-05-29" @default.
- W2944885770 creator A5015885229 @default.
- W2944885770 creator A5018634758 @default.
- W2944885770 creator A5040855074 @default.
- W2944885770 date "2019-05-16" @default.
- W2944885770 modified "2023-10-14" @default.
- W2944885770 title "Effects of measurements on correlations of software code metrics" @default.
- W2944885770 cites W1964962870 @default.
- W2944885770 cites W1970656444 @default.
- W2944885770 cites W1972458945 @default.
- W2944885770 cites W1998025025 @default.
- W2944885770 cites W2013210184 @default.
- W2944885770 cites W2030326671 @default.
- W2944885770 cites W2034628356 @default.
- W2944885770 cites W2036384654 @default.
- W2944885770 cites W2041628322 @default.
- W2944885770 cites W2044802063 @default.
- W2944885770 cites W2048957655 @default.
- W2944885770 cites W2051501343 @default.
- W2944885770 cites W2054210571 @default.
- W2944885770 cites W2062937278 @default.
- W2944885770 cites W2075216460 @default.
- W2944885770 cites W2082792969 @default.
- W2944885770 cites W2105672266 @default.
- W2944885770 cites W2106189944 @default.
- W2944885770 cites W2110715265 @default.
- W2944885770 cites W2117321536 @default.
- W2944885770 cites W2117539536 @default.
- W2944885770 cites W2122463941 @default.
- W2944885770 cites W2122475259 @default.
- W2944885770 cites W2124418175 @default.
- W2944885770 cites W2130830290 @default.
- W2944885770 cites W2135790748 @default.
- W2944885770 cites W2162451880 @default.
- W2944885770 cites W2162739315 @default.
- W2944885770 cites W2296620627 @default.
- W2944885770 cites W2474618534 @default.
- W2944885770 cites W2547111910 @default.
- W2944885770 cites W2605504937 @default.
- W2944885770 cites W2624900765 @default.
- W2944885770 cites W2769811094 @default.
- W2944885770 cites W4236757431 @default.
- W2944885770 cites W4245050711 @default.
- W2944885770 cites W4251331536 @default.
- W2944885770 cites W579755141 @default.
- W2944885770 doi "https://doi.org/10.1007/s10664-019-09714-9" @default.
- W2944885770 hasPublicationYear "2019" @default.
- W2944885770 type Work @default.
- W2944885770 sameAs 2944885770 @default.
- W2944885770 citedByCount "8" @default.
- W2944885770 countsByYear W29448857702020 @default.
- W2944885770 countsByYear W29448857702021 @default.
- W2944885770 countsByYear W29448857702022 @default.
- W2944885770 countsByYear W29448857702023 @default.
- W2944885770 crossrefType "journal-article" @default.
- W2944885770 hasAuthorship W2944885770A5015885229 @default.
- W2944885770 hasAuthorship W2944885770A5018634758 @default.
- W2944885770 hasAuthorship W2944885770A5040855074 @default.
- W2944885770 hasBestOaLocation W29448857701 @default.
- W2944885770 hasConcept C105795698 @default.
- W2944885770 hasConcept C114614502 @default.
- W2944885770 hasConcept C117447612 @default.
- W2944885770 hasConcept C120936955 @default.
- W2944885770 hasConcept C124101348 @default.
- W2944885770 hasConcept C127413603 @default.
- W2944885770 hasConcept C12868164 @default.
- W2944885770 hasConcept C164226766 @default.
- W2944885770 hasConcept C165793278 @default.
- W2944885770 hasConcept C176217482 @default.
- W2944885770 hasConcept C177264268 @default.
- W2944885770 hasConcept C199360897 @default.
- W2944885770 hasConcept C199519371 @default.
- W2944885770 hasConcept C206041023 @default.
- W2944885770 hasConcept C21547014 @default.
- W2944885770 hasConcept C2776760102 @default.
- W2944885770 hasConcept C2777904410 @default.
- W2944885770 hasConcept C33923547 @default.
- W2944885770 hasConcept C41008148 @default.
- W2944885770 hasConcept C529173508 @default.
- W2944885770 hasConcept C82214349 @default.
- W2944885770 hasConceptScore W2944885770C105795698 @default.
- W2944885770 hasConceptScore W2944885770C114614502 @default.
- W2944885770 hasConceptScore W2944885770C117447612 @default.
- W2944885770 hasConceptScore W2944885770C120936955 @default.
- W2944885770 hasConceptScore W2944885770C124101348 @default.
- W2944885770 hasConceptScore W2944885770C127413603 @default.
- W2944885770 hasConceptScore W2944885770C12868164 @default.
- W2944885770 hasConceptScore W2944885770C164226766 @default.
- W2944885770 hasConceptScore W2944885770C165793278 @default.
- W2944885770 hasConceptScore W2944885770C176217482 @default.
- W2944885770 hasConceptScore W2944885770C177264268 @default.
- W2944885770 hasConceptScore W2944885770C199360897 @default.
- W2944885770 hasConceptScore W2944885770C199519371 @default.
- W2944885770 hasConceptScore W2944885770C206041023 @default.
- W2944885770 hasConceptScore W2944885770C21547014 @default.
- W2944885770 hasConceptScore W2944885770C2776760102 @default.
- W2944885770 hasConceptScore W2944885770C2777904410 @default.