Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944901265> ?p ?o ?g. }
- W2944901265 endingPage "3067" @default.
- W2944901265 startingPage "3053" @default.
- W2944901265 abstract "The recent studies for face alignment have involved developing an isolated algorithm on well-cropped face images. It is difficult to obtain the expected input by using an off-the-shelf face detector in practical applications. In this paper, we attempt to bridge between face detection and face alignment by establishing a novel joint multi-task model, which allows us to simultaneously detect multiple faces and their landmarks on a given scene image. In contrast to the pipeline-based framework by cascading separate models, we aim to propose an end-to-end convolutional network by sharing and transform feature representations between the task-specific modules. To learn a robust landmark estimator for unconstrained face alignment, three types of context enhanced blocks are designed to encode feature maps with multi-level context, multi-scale context, and global context. In the post-processing step, we develop a shape reconstruction algorithm based on point distribution model to refine the landmark outliers. Extensive experiments demonstrate that our results are robust for the landmark location task and insensitive to the location of estimated face regions. Furthermore, our method significantly outperforms recent state-of-the-art methods on several challenging datasets including 300 W, AFLW, and COFW." @default.
- W2944901265 created "2019-05-29" @default.
- W2944901265 creator A5029372812 @default.
- W2944901265 creator A5051841085 @default.
- W2944901265 creator A5062981171 @default.
- W2944901265 creator A5063979916 @default.
- W2944901265 creator A5082786719 @default.
- W2944901265 date "2019-12-01" @default.
- W2944901265 modified "2023-10-16" @default.
- W2944901265 title "Region-Based Context Enhanced Network for Robust Multiple Face Alignment" @default.
- W2944901265 cites W1536680647 @default.
- W2944901265 cites W1682276745 @default.
- W2944901265 cites W1795776638 @default.
- W2944901265 cites W1796263212 @default.
- W2944901265 cites W1832881114 @default.
- W2944901265 cites W1841538821 @default.
- W2944901265 cites W1903029394 @default.
- W2944901265 cites W1963599662 @default.
- W2944901265 cites W1976948919 @default.
- W2944901265 cites W1977821862 @default.
- W2944901265 cites W1990937109 @default.
- W2944901265 cites W1998294030 @default.
- W2944901265 cites W2005264304 @default.
- W2944901265 cites W2012885984 @default.
- W2944901265 cites W2015268479 @default.
- W2944901265 cites W2037960784 @default.
- W2944901265 cites W2041075748 @default.
- W2944901265 cites W204612701 @default.
- W2944901265 cites W2051526232 @default.
- W2944901265 cites W2058961190 @default.
- W2944901265 cites W2060281713 @default.
- W2944901265 cites W2082308025 @default.
- W2944901265 cites W2085983359 @default.
- W2944901265 cites W2087681821 @default.
- W2944901265 cites W2102605133 @default.
- W2944901265 cites W2111372597 @default.
- W2944901265 cites W2124750300 @default.
- W2944901265 cites W2152826865 @default.
- W2944901265 cites W2155893237 @default.
- W2944901265 cites W2157285372 @default.
- W2944901265 cites W2166694921 @default.
- W2944901265 cites W2194775991 @default.
- W2944901265 cites W2206078784 @default.
- W2944901265 cites W2214733281 @default.
- W2944901265 cites W2219124274 @default.
- W2944901265 cites W2221735899 @default.
- W2944901265 cites W2284800790 @default.
- W2944901265 cites W2288122362 @default.
- W2944901265 cites W2292429248 @default.
- W2944901265 cites W2307770531 @default.
- W2944901265 cites W2432917172 @default.
- W2944901265 cites W2437557374 @default.
- W2944901265 cites W2462523589 @default.
- W2944901265 cites W2465108587 @default.
- W2944901265 cites W2469547219 @default.
- W2944901265 cites W2474575620 @default.
- W2944901265 cites W2495387757 @default.
- W2944901265 cites W2519753233 @default.
- W2944901265 cites W2554268477 @default.
- W2944901265 cites W2557290168 @default.
- W2944901265 cites W2557727335 @default.
- W2944901265 cites W2559085405 @default.
- W2944901265 cites W2560023338 @default.
- W2944901265 cites W2565639579 @default.
- W2944901265 cites W2579152745 @default.
- W2944901265 cites W2589255576 @default.
- W2944901265 cites W2598666589 @default.
- W2944901265 cites W2736728583 @default.
- W2944901265 cites W2740020909 @default.
- W2944901265 cites W2756243930 @default.
- W2944901265 cites W2780034403 @default.
- W2944901265 cites W2789917104 @default.
- W2944901265 cites W2798730128 @default.
- W2944901265 cites W2798814244 @default.
- W2944901265 cites W2962925415 @default.
- W2944901265 cites W2963011882 @default.
- W2944901265 cites W2963253045 @default.
- W2944901265 cites W2963377935 @default.
- W2944901265 cites W2963566548 @default.
- W2944901265 cites W2963856926 @default.
- W2944901265 cites W2963993755 @default.
- W2944901265 cites W2964001392 @default.
- W2944901265 cites W2964145484 @default.
- W2944901265 cites W2964309795 @default.
- W2944901265 cites W2977745911 @default.
- W2944901265 cites W3101998545 @default.
- W2944901265 cites W3104792420 @default.
- W2944901265 cites W3140954725 @default.
- W2944901265 cites W639708223 @default.
- W2944901265 doi "https://doi.org/10.1109/tmm.2019.2916455" @default.
- W2944901265 hasPublicationYear "2019" @default.
- W2944901265 type Work @default.
- W2944901265 sameAs 2944901265 @default.
- W2944901265 citedByCount "11" @default.
- W2944901265 countsByYear W29449012652020 @default.
- W2944901265 countsByYear W29449012652021 @default.
- W2944901265 countsByYear W29449012652022 @default.
- W2944901265 countsByYear W29449012652023 @default.