Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944959957> ?p ?o ?g. }
- W2944959957 endingPage "451" @default.
- W2944959957 startingPage "441" @default.
- W2944959957 abstract "In the present era, a major drawback of current anti-cancer drugs is the lack of satisfactory specificity towards tumor cells. Despite the presence of several therapies against cancer, tumor homing peptides are gaining importance as therapeutic agents. In this regard, the huge number of therapeutic peptides generated in recent years, demands the need to develop an effective and interpretable computational model for rapidly, effectively and automatically predicting tumor homing peptides. Therefore, a sequence-based approach referred herein as THPep has been developed to predict and analyze tumor homing peptides by using an interpretable random forest classifier in concomitant with amino acid composition, dipeptide composition and pseudo amino acid composition. An overall accuracy and Matthews correlation coefficient of 90.13% and 0.76, respectively, were achieved from the independent test set on an objective benchmark dataset. Upon comparison, it was found that THPep was superior to the existing method and holds high potential as a useful tool for predicting tumor homing peptides. For the convenience of experimental scientists, a web server for this proposed method is provided publicly at http://codes.bio/thpep/." @default.
- W2944959957 created "2019-05-29" @default.
- W2944959957 creator A5034384846 @default.
- W2944959957 creator A5043577834 @default.
- W2944959957 creator A5069155677 @default.
- W2944959957 creator A5084444175 @default.
- W2944959957 date "2019-06-01" @default.
- W2944959957 modified "2023-10-17" @default.
- W2944959957 title "THPep: A machine learning-based approach for predicting tumor homing peptides" @default.
- W2944959957 cites W1489867969 @default.
- W2944959957 cites W1966886017 @default.
- W2944959957 cites W1973450171 @default.
- W2944959957 cites W1989084881 @default.
- W2944959957 cites W2001728487 @default.
- W2944959957 cites W2002424283 @default.
- W2944959957 cites W2006617902 @default.
- W2944959957 cites W2007344527 @default.
- W2944959957 cites W2007507285 @default.
- W2944959957 cites W2014825000 @default.
- W2944959957 cites W2018061481 @default.
- W2944959957 cites W2026742952 @default.
- W2944959957 cites W2027378799 @default.
- W2944959957 cites W2032240634 @default.
- W2944959957 cites W2034070267 @default.
- W2944959957 cites W2043338013 @default.
- W2944959957 cites W2044510479 @default.
- W2944959957 cites W2052437683 @default.
- W2944959957 cites W2062849515 @default.
- W2944959957 cites W2068124694 @default.
- W2944959957 cites W2069806740 @default.
- W2944959957 cites W2073847499 @default.
- W2944959957 cites W2074427147 @default.
- W2944959957 cites W2084039931 @default.
- W2944959957 cites W2097606916 @default.
- W2944959957 cites W2104618032 @default.
- W2944959957 cites W2123647020 @default.
- W2944959957 cites W2124005542 @default.
- W2944959957 cites W2133583551 @default.
- W2944959957 cites W2136032819 @default.
- W2944959957 cites W2137827030 @default.
- W2944959957 cites W2141062474 @default.
- W2944959957 cites W2156723154 @default.
- W2944959957 cites W2163326536 @default.
- W2944959957 cites W2165975808 @default.
- W2944959957 cites W2339312310 @default.
- W2944959957 cites W2412746331 @default.
- W2944959957 cites W2530067632 @default.
- W2944959957 cites W2534171689 @default.
- W2944959957 cites W2561261875 @default.
- W2944959957 cites W2586057086 @default.
- W2944959957 cites W2589065420 @default.
- W2944959957 cites W2736280491 @default.
- W2944959957 cites W2911964244 @default.
- W2944959957 cites W4212883601 @default.
- W2944959957 doi "https://doi.org/10.1016/j.compbiolchem.2019.05.008" @default.
- W2944959957 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31151025" @default.
- W2944959957 hasPublicationYear "2019" @default.
- W2944959957 type Work @default.
- W2944959957 sameAs 2944959957 @default.
- W2944959957 citedByCount "50" @default.
- W2944959957 countsByYear W29449599572019 @default.
- W2944959957 countsByYear W29449599572020 @default.
- W2944959957 countsByYear W29449599572021 @default.
- W2944959957 countsByYear W29449599572022 @default.
- W2944959957 countsByYear W29449599572023 @default.
- W2944959957 crossrefType "journal-article" @default.
- W2944959957 hasAuthorship W2944959957A5034384846 @default.
- W2944959957 hasAuthorship W2944959957A5043577834 @default.
- W2944959957 hasAuthorship W2944959957A5069155677 @default.
- W2944959957 hasAuthorship W2944959957A5084444175 @default.
- W2944959957 hasConcept C119857082 @default.
- W2944959957 hasConcept C12267149 @default.
- W2944959957 hasConcept C151872237 @default.
- W2944959957 hasConcept C154945302 @default.
- W2944959957 hasConcept C164085508 @default.
- W2944959957 hasConcept C169258074 @default.
- W2944959957 hasConcept C169903167 @default.
- W2944959957 hasConcept C185592680 @default.
- W2944959957 hasConcept C18903297 @default.
- W2944959957 hasConcept C2779138802 @default.
- W2944959957 hasConcept C2779281246 @default.
- W2944959957 hasConcept C2780362125 @default.
- W2944959957 hasConcept C41008148 @default.
- W2944959957 hasConcept C55493867 @default.
- W2944959957 hasConcept C86803240 @default.
- W2944959957 hasConceptScore W2944959957C119857082 @default.
- W2944959957 hasConceptScore W2944959957C12267149 @default.
- W2944959957 hasConceptScore W2944959957C151872237 @default.
- W2944959957 hasConceptScore W2944959957C154945302 @default.
- W2944959957 hasConceptScore W2944959957C164085508 @default.
- W2944959957 hasConceptScore W2944959957C169258074 @default.
- W2944959957 hasConceptScore W2944959957C169903167 @default.
- W2944959957 hasConceptScore W2944959957C185592680 @default.
- W2944959957 hasConceptScore W2944959957C18903297 @default.
- W2944959957 hasConceptScore W2944959957C2779138802 @default.
- W2944959957 hasConceptScore W2944959957C2779281246 @default.
- W2944959957 hasConceptScore W2944959957C2780362125 @default.
- W2944959957 hasConceptScore W2944959957C41008148 @default.