Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944967589> ?p ?o ?g. }
- W2944967589 endingPage "182" @default.
- W2944967589 startingPage "175" @default.
- W2944967589 abstract "In the United States, lung cancer is the leading cause of cancer death. The survival rate could increase by early detection. In recent years, the endobronchial ultrasonography (EBUS) images have been utilized to differentiate between benign and malignant lesions and guide transbronchial needle aspiration because it is real-time, radiation-free and has better performance. However, the diagnosis depends on the subjective judgment from doctors. In some previous studies, which using the grayscale image textures of the EBUS images to classify the lung lesions but it belonged to semi-automated system which still need the experts to select a part of the lesion first. Therefore, the main purpose of this study was to achieve full automation assistance by using convolution neural network. First of all, the EBUS images resized to the input size of convolution neural network (CNN). And then, the training data were rotated and flipped. The parameters of the model trained with ImageNet previously were transferred to the CaffeNet used to classify the lung lesions. And then, the parameter of the CaffeNet was optimized by the EBUS training data. The features with 4096 dimension were extracted from the 7th fully connected layer and the support vector machine (SVM) was utilized to differentiate benign and malignant. This study was validated with 164 cases including 56 benign and 108 malignant. According to the experiment results, applying the classification by the features from the CNN with transfer learning had better performance than the conventional method with gray level co-occurrence matrix (GLCM) features. The accuracy, sensitivity, specificity, and the area under ROC achieved 85.4% (140/164), 87.0% (94/108), 82.1% (46/56), and 0.8705, respectively. From the experiment results, it has potential ability to diagnose EBUS images with CNN." @default.
- W2944967589 created "2019-05-29" @default.
- W2944967589 creator A5009603071 @default.
- W2944967589 creator A5017566206 @default.
- W2944967589 creator A5022959153 @default.
- W2944967589 creator A5030973241 @default.
- W2944967589 creator A5031463984 @default.
- W2944967589 creator A5034837211 @default.
- W2944967589 creator A5064231115 @default.
- W2944967589 creator A5070587441 @default.
- W2944967589 date "2019-08-01" @default.
- W2944967589 modified "2023-10-15" @default.
- W2944967589 title "Computer-aided diagnosis of endobronchial ultrasound images using convolutional neural network" @default.
- W2944967589 cites W130099911 @default.
- W2944967589 cites W1567451453 @default.
- W2944967589 cites W1971534138 @default.
- W2944967589 cites W2015096430 @default.
- W2944967589 cites W2039512466 @default.
- W2944967589 cites W2044465660 @default.
- W2944967589 cites W2053763901 @default.
- W2944967589 cites W2112796928 @default.
- W2944967589 cites W2117539524 @default.
- W2944967589 cites W2143045812 @default.
- W2944967589 cites W2153704901 @default.
- W2944967589 cites W2235523093 @default.
- W2944967589 cites W2253429366 @default.
- W2944967589 cites W2341106171 @default.
- W2944967589 cites W2346062110 @default.
- W2944967589 cites W2413439914 @default.
- W2944967589 cites W2559881210 @default.
- W2944967589 cites W2889646458 @default.
- W2944967589 cites W2919115771 @default.
- W2944967589 cites W3098357269 @default.
- W2944967589 cites W4239510810 @default.
- W2944967589 doi "https://doi.org/10.1016/j.cmpb.2019.05.020" @default.
- W2944967589 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31319946" @default.
- W2944967589 hasPublicationYear "2019" @default.
- W2944967589 type Work @default.
- W2944967589 sameAs 2944967589 @default.
- W2944967589 citedByCount "30" @default.
- W2944967589 countsByYear W29449675892020 @default.
- W2944967589 countsByYear W29449675892021 @default.
- W2944967589 countsByYear W29449675892022 @default.
- W2944967589 countsByYear W29449675892023 @default.
- W2944967589 crossrefType "journal-article" @default.
- W2944967589 hasAuthorship W2944967589A5009603071 @default.
- W2944967589 hasAuthorship W2944967589A5017566206 @default.
- W2944967589 hasAuthorship W2944967589A5022959153 @default.
- W2944967589 hasAuthorship W2944967589A5030973241 @default.
- W2944967589 hasAuthorship W2944967589A5031463984 @default.
- W2944967589 hasAuthorship W2944967589A5034837211 @default.
- W2944967589 hasAuthorship W2944967589A5064231115 @default.
- W2944967589 hasAuthorship W2944967589A5070587441 @default.
- W2944967589 hasConcept C108583219 @default.
- W2944967589 hasConcept C115961682 @default.
- W2944967589 hasConcept C12267149 @default.
- W2944967589 hasConcept C126838900 @default.
- W2944967589 hasConcept C142724271 @default.
- W2944967589 hasConcept C153180895 @default.
- W2944967589 hasConcept C154945302 @default.
- W2944967589 hasConcept C2776256026 @default.
- W2944967589 hasConcept C41008148 @default.
- W2944967589 hasConcept C50644808 @default.
- W2944967589 hasConcept C71924100 @default.
- W2944967589 hasConcept C78201319 @default.
- W2944967589 hasConcept C81363708 @default.
- W2944967589 hasConcept C89600930 @default.
- W2944967589 hasConceptScore W2944967589C108583219 @default.
- W2944967589 hasConceptScore W2944967589C115961682 @default.
- W2944967589 hasConceptScore W2944967589C12267149 @default.
- W2944967589 hasConceptScore W2944967589C126838900 @default.
- W2944967589 hasConceptScore W2944967589C142724271 @default.
- W2944967589 hasConceptScore W2944967589C153180895 @default.
- W2944967589 hasConceptScore W2944967589C154945302 @default.
- W2944967589 hasConceptScore W2944967589C2776256026 @default.
- W2944967589 hasConceptScore W2944967589C41008148 @default.
- W2944967589 hasConceptScore W2944967589C50644808 @default.
- W2944967589 hasConceptScore W2944967589C71924100 @default.
- W2944967589 hasConceptScore W2944967589C78201319 @default.
- W2944967589 hasConceptScore W2944967589C81363708 @default.
- W2944967589 hasConceptScore W2944967589C89600930 @default.
- W2944967589 hasFunder F4320309618 @default.
- W2944967589 hasLocation W29449675891 @default.
- W2944967589 hasLocation W29449675892 @default.
- W2944967589 hasOpenAccess W2944967589 @default.
- W2944967589 hasPrimaryLocation W29449675891 @default.
- W2944967589 hasRelatedWork W2738221750 @default.
- W2944967589 hasRelatedWork W3102253946 @default.
- W2944967589 hasRelatedWork W3144574764 @default.
- W2944967589 hasRelatedWork W3156786002 @default.
- W2944967589 hasRelatedWork W3193301557 @default.
- W2944967589 hasRelatedWork W4293211451 @default.
- W2944967589 hasRelatedWork W4308191152 @default.
- W2944967589 hasRelatedWork W4312417841 @default.
- W2944967589 hasRelatedWork W4321369474 @default.
- W2944967589 hasRelatedWork W564581980 @default.
- W2944967589 hasVolume "177" @default.
- W2944967589 isParatext "false" @default.