Matches in SemOpenAlex for { <https://semopenalex.org/work/W2944996933> ?p ?o ?g. }
- W2944996933 abstract "Globally, the mining companies are struggling to achieve productivity improvements. This is partly attributed to the fact that the existing mechanical comminution methods disintegrate rocks in an unselective fashion whereby all the feed particles, including all the barren particles that are of no economic values, are comminuted to micro sizes to allow further beneficiation. The energy and resources devoted to the barren rocks are deemed wasted. This study explores the feasibility of applying the high voltage pulses (HVP) as a disruptive technology for selective treatment of the mineralised particles.Comprehensive test work with both real ores and synthetic particles has shown indisputable evidence of HVP propensity for particles that contain mineralisation. An improved multiple particles (MP) method has been developed. Different from the previous single particle (SP) method which forces HVP energy into every single particle, the MP method gives HVP complete “freedom” to differentiate particles by its own propensity so that the selective nature of HVP is utilized to a greater extent. The MP method is shown to result in better mineralisation deportment into the finer sizes, at a lower specific energy, than the SP method of HVP application. This enables higher metal recovery and waste rejection rates during ore pre-concentration.It is important when performing the laboratory HVP tests that the minimum quantity of ore sample required to achieve a statistically consistent HVP pre-concentration result is used. A method has been developed by firstly conducting multiple repeats of HVP tests with a small sample size. Then, numerical resampling of the experimental data was performed to produce virtual datasets of various larger quantities of ore sample. Statistical analysis on the virtual datasets was performed to establish the minimum quantities of ore sample requirement. To evaluate the sensitivity of HVP performance to the variation in sample size, a Sensitivity Index (SI) has been introduced and a mathematical description of the Sensitivity Index is presented.Synthetic particles made of grout embedded with various metalliferous minerals of different conductivities/permittivities were employed to provide further insights into the fundamental mechanisms that affect HVP breakage selectivity between particles. The effects of metalliferous grain locality in a particle, the feed particle position relevant to the electrode in the pulse treatment zone, and the interactions between various mineralised particles on HVP breakage selectivity and the energy transfer efficiency are demonstrated.In addition to the HVP selective breakage of particles, the synthetic particle study also found that HVP selectively weakens the mineralised particles using both micro (X-ray CT) and macro-scale (the JKRBT) examinations. The barren synthetic particles only exhibit minor damage in the internal structure and appear much more competent than the mineralised particles after HVP treatment. The results have suggested that barren rocks should be excluded in the downstream processes to maximise the HVP pre-weakening benefits. Using both particle surface scanning and X-ray CT internal tomography techniques, the study found that the HVP domain breakdown channel penetrated through the body of the embedded metalliferous mineral grain, rather than along its boundaries as reported in the literature, and completely disintegrated the whole mineral grains embedded in the synthetic particles.Two comprehensive case studies for two world major mining companies were conducted, which help identify the overall benefits of applying HVP for ore selective breakage in the mineral comminution circuit. The results have shown that Sample E is highly amenable to HVP pre-concentration and pre-weakening, whereas a marginal Cu pre-concentration performance and a modest pre-weakening effect was obtained with Sample F. The different response of the two ore samples to HVP treatment was reasoned from two ore-specific factors, namely material constitution heterogeneity and gangue mineralisation. Combining the findings from the synthetic particle study and the real ore case study, new understandings of HVP breakage selectivity and ore amenability to the HVP pre-treatment are generated." @default.
- W2944996933 created "2019-05-29" @default.
- W2944996933 creator A5017249630 @default.
- W2944996933 date "2019-04-08" @default.
- W2944996933 modified "2023-09-27" @default.
- W2944996933 title "Selective breakage of mineralised particles by high voltage pulses" @default.
- W2944996933 cites W1164948506 @default.
- W2944996933 cites W1481220488 @default.
- W2944996933 cites W1510106785 @default.
- W2944996933 cites W1524876236 @default.
- W2944996933 cites W1548425709 @default.
- W2944996933 cites W1576647884 @default.
- W2944996933 cites W1797292078 @default.
- W2944996933 cites W1804849457 @default.
- W2944996933 cites W181332408 @default.
- W2944996933 cites W1963522437 @default.
- W2944996933 cites W1969433876 @default.
- W2944996933 cites W1970635216 @default.
- W2944996933 cites W1977578271 @default.
- W2944996933 cites W1981031612 @default.
- W2944996933 cites W1990826839 @default.
- W2944996933 cites W1991722200 @default.
- W2944996933 cites W1997982740 @default.
- W2944996933 cites W2001818433 @default.
- W2944996933 cites W2002706354 @default.
- W2944996933 cites W2005740528 @default.
- W2944996933 cites W2006671357 @default.
- W2944996933 cites W2009249877 @default.
- W2944996933 cites W2010109750 @default.
- W2944996933 cites W2011082330 @default.
- W2944996933 cites W2011833731 @default.
- W2944996933 cites W2012618123 @default.
- W2944996933 cites W2021644158 @default.
- W2944996933 cites W2025274420 @default.
- W2944996933 cites W2025518708 @default.
- W2944996933 cites W2026642360 @default.
- W2944996933 cites W2037676512 @default.
- W2944996933 cites W2040635689 @default.
- W2944996933 cites W2040654047 @default.
- W2944996933 cites W2051156700 @default.
- W2944996933 cites W2051391117 @default.
- W2944996933 cites W2054555543 @default.
- W2944996933 cites W2055036299 @default.
- W2944996933 cites W2059386253 @default.
- W2944996933 cites W2065847076 @default.
- W2944996933 cites W2078404669 @default.
- W2944996933 cites W2078872925 @default.
- W2944996933 cites W2084542177 @default.
- W2944996933 cites W2097613200 @default.
- W2944996933 cites W2099540110 @default.
- W2944996933 cites W2108976963 @default.
- W2944996933 cites W2113832899 @default.
- W2944996933 cites W2120452810 @default.
- W2944996933 cites W2142545101 @default.
- W2944996933 cites W2157756681 @default.
- W2944996933 cites W2165158410 @default.
- W2944996933 cites W2166355680 @default.
- W2944996933 cites W2171751607 @default.
- W2944996933 cites W2181817954 @default.
- W2944996933 cites W2219378288 @default.
- W2944996933 cites W2245337747 @default.
- W2944996933 cites W2247377136 @default.
- W2944996933 cites W2293899786 @default.
- W2944996933 cites W2388909239 @default.
- W2944996933 cites W2516877453 @default.
- W2944996933 cites W2525791861 @default.
- W2944996933 cites W2527716007 @default.
- W2944996933 cites W2528628262 @default.
- W2944996933 cites W2549568951 @default.
- W2944996933 cites W255666595 @default.
- W2944996933 cites W2584752841 @default.
- W2944996933 cites W2591769370 @default.
- W2944996933 cites W2626064910 @default.
- W2944996933 cites W2763875929 @default.
- W2944996933 cites W2891105744 @default.
- W2944996933 cites W3145339113 @default.
- W2944996933 cites W32038918 @default.
- W2944996933 cites W60387271 @default.
- W2944996933 cites W800697649 @default.
- W2944996933 doi "https://doi.org/10.14264/uql.2019.266" @default.
- W2944996933 hasPublicationYear "2019" @default.
- W2944996933 type Work @default.
- W2944996933 sameAs 2944996933 @default.
- W2944996933 citedByCount "0" @default.
- W2944996933 crossrefType "dissertation" @default.
- W2944996933 hasAuthorship W2944996933A5017249630 @default.
- W2944996933 hasConcept C105795698 @default.
- W2944996933 hasConcept C150921843 @default.
- W2944996933 hasConcept C159985019 @default.
- W2944996933 hasConcept C185592680 @default.
- W2944996933 hasConcept C18903297 @default.
- W2944996933 hasConcept C191897082 @default.
- W2944996933 hasConcept C192562407 @default.
- W2944996933 hasConcept C199289684 @default.
- W2944996933 hasConcept C2778517922 @default.
- W2944996933 hasConcept C2779015675 @default.
- W2944996933 hasConcept C2780952559 @default.
- W2944996933 hasConcept C33923547 @default.
- W2944996933 hasConcept C86803240 @default.
- W2944996933 hasConceptScore W2944996933C105795698 @default.