Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945020140> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2945020140 endingPage "1887" @default.
- W2945020140 startingPage "1875" @default.
- W2945020140 abstract "Abstract Animal population sizes are often estimated using aerial sample counts by human observers, both for wildlife and livestock. The associated methods of counting remained more or less the same since the 1970s, but suffer from low precision and low accuracy of population estimates. Aerial counts using cost‐efficient Unmanned Aerial Vehicles or microlight aircrafts with cameras and an automated animal detection algorithm can potentially improve this precision and accuracy. Therefore, we evaluated the performance of the multi‐class convolutional neural network RetinaNet in detecting elephants, giraffes and zebras in aerial images from two Kenyan animal counts. The algorithm detected 95% of the number of elephants, 91% of giraffes and 90% of zebras that were found by four layers of human annotation, of which it correctly detected an extra 2.8% of elephants, 3.8% giraffes and 4.0% zebras that were missed by all humans, while detecting only 1.6 to 5.0 false positives per true positive. Furthermore, the animal detections by the algorithm were less sensitive to the sighting distance than humans were. With such a high recall and precision, we posit it is feasible to replace manual aerial animal count methods (from images and/or directly) by only the manual identification of image bounding boxes selected by the algorithm and then use a correction factor equal to the inverse of the undercounting bias in the calculation of the population estimates. This correction factor causes the standard error of the population estimate to increase slightly compared to a manual method, but this increase can be compensated for when the sampling effort would increase by 23%. However, an increase in sampling effort of 160% to 1,050% can be attained with the same expenses for equipment and personnel using our proposed semi‐automatic method compared to a manual method. Therefore, we conclude that our proposed aerial count method will improve the accuracy of population estimates and will decrease the standard error of population estimates by 31% to 67%. Most importantly, this animal detection algorithm has the potential to outperform humans in detecting animals from the air when supplied with images taken at a fixed rate." @default.
- W2945020140 created "2019-05-29" @default.
- W2945020140 creator A5009451022 @default.
- W2945020140 creator A5018530169 @default.
- W2945020140 creator A5024941484 @default.
- W2945020140 creator A5042396884 @default.
- W2945020140 creator A5051632594 @default.
- W2945020140 creator A5061011401 @default.
- W2945020140 creator A5061063544 @default.
- W2945020140 creator A5065729966 @default.
- W2945020140 date "2019-08-29" @default.
- W2945020140 modified "2023-10-06" @default.
- W2945020140 title "Improving the precision and accuracy of animal population estimates with aerial image object detection" @default.
- W2945020140 cites W191710537 @default.
- W2945020140 cites W1982419557 @default.
- W2945020140 cites W2062767992 @default.
- W2945020140 cites W206818718 @default.
- W2945020140 cites W2108598243 @default.
- W2945020140 cites W2142250007 @default.
- W2945020140 cites W2143897835 @default.
- W2945020140 cites W2176227176 @default.
- W2945020140 cites W2194775991 @default.
- W2945020140 cites W2222604011 @default.
- W2945020140 cites W2299896372 @default.
- W2945020140 cites W2317362952 @default.
- W2945020140 cites W2327793301 @default.
- W2945020140 cites W2330771028 @default.
- W2945020140 cites W2483141174 @default.
- W2945020140 cites W2499685508 @default.
- W2945020140 cites W2557505665 @default.
- W2945020140 cites W2565639579 @default.
- W2945020140 cites W2621822939 @default.
- W2945020140 cites W2737340643 @default.
- W2945020140 cites W2752508182 @default.
- W2945020140 cites W2810030371 @default.
- W2945020140 cites W2884561390 @default.
- W2945020140 doi "https://doi.org/10.1111/2041-210x.13277" @default.
- W2945020140 hasPublicationYear "2019" @default.
- W2945020140 type Work @default.
- W2945020140 sameAs 2945020140 @default.
- W2945020140 citedByCount "48" @default.
- W2945020140 countsByYear W29450201402020 @default.
- W2945020140 countsByYear W29450201402021 @default.
- W2945020140 countsByYear W29450201402022 @default.
- W2945020140 countsByYear W29450201402023 @default.
- W2945020140 crossrefType "journal-article" @default.
- W2945020140 hasAuthorship W2945020140A5009451022 @default.
- W2945020140 hasAuthorship W2945020140A5018530169 @default.
- W2945020140 hasAuthorship W2945020140A5024941484 @default.
- W2945020140 hasAuthorship W2945020140A5042396884 @default.
- W2945020140 hasAuthorship W2945020140A5051632594 @default.
- W2945020140 hasAuthorship W2945020140A5061011401 @default.
- W2945020140 hasAuthorship W2945020140A5061063544 @default.
- W2945020140 hasAuthorship W2945020140A5065729966 @default.
- W2945020140 hasBestOaLocation W29450201401 @default.
- W2945020140 hasConcept C105795698 @default.
- W2945020140 hasConcept C144024400 @default.
- W2945020140 hasConcept C149923435 @default.
- W2945020140 hasConcept C153180895 @default.
- W2945020140 hasConcept C154945302 @default.
- W2945020140 hasConcept C2776151529 @default.
- W2945020140 hasConcept C2908647359 @default.
- W2945020140 hasConcept C33923547 @default.
- W2945020140 hasConcept C41008148 @default.
- W2945020140 hasConcept C64869954 @default.
- W2945020140 hasConceptScore W2945020140C105795698 @default.
- W2945020140 hasConceptScore W2945020140C144024400 @default.
- W2945020140 hasConceptScore W2945020140C149923435 @default.
- W2945020140 hasConceptScore W2945020140C153180895 @default.
- W2945020140 hasConceptScore W2945020140C154945302 @default.
- W2945020140 hasConceptScore W2945020140C2776151529 @default.
- W2945020140 hasConceptScore W2945020140C2908647359 @default.
- W2945020140 hasConceptScore W2945020140C33923547 @default.
- W2945020140 hasConceptScore W2945020140C41008148 @default.
- W2945020140 hasConceptScore W2945020140C64869954 @default.
- W2945020140 hasFunder F4320321800 @default.
- W2945020140 hasIssue "11" @default.
- W2945020140 hasLocation W29450201401 @default.
- W2945020140 hasOpenAccess W2945020140 @default.
- W2945020140 hasPrimaryLocation W29450201401 @default.
- W2945020140 hasRelatedWork W2033914206 @default.
- W2945020140 hasRelatedWork W2042327336 @default.
- W2945020140 hasRelatedWork W2046077695 @default.
- W2945020140 hasRelatedWork W2146076056 @default.
- W2945020140 hasRelatedWork W2163831990 @default.
- W2945020140 hasRelatedWork W2378160586 @default.
- W2945020140 hasRelatedWork W2768865287 @default.
- W2945020140 hasRelatedWork W2996038082 @default.
- W2945020140 hasRelatedWork W3003836766 @default.
- W2945020140 hasRelatedWork W4377715550 @default.
- W2945020140 hasVolume "10" @default.
- W2945020140 isParatext "false" @default.
- W2945020140 isRetracted "false" @default.
- W2945020140 magId "2945020140" @default.
- W2945020140 workType "article" @default.