Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945020384> ?p ?o ?g. }
- W2945020384 endingPage "1943" @default.
- W2945020384 startingPage "1943" @default.
- W2945020384 abstract "Hyperspectral remote sensing can be used to effectively identify contaminated elements in soil. However, in the field of monitoring soil heavy metal pollution, hyperspectral remote sensing has the characteristics of high dimensionality and high redundancy, which seriously affect the accuracy and stability of hyperspectral inversion models. To resolve the problem, a gradient boosting regression tree (GBRT) hyperspectral inversion algorithm for heavy metal (Arsenic (As)) content in soils based on Spearman’s rank correlation analysis (SCA) coupled with competitive adaptive reweighted sampling (CARS) is proposed in this paper. Firstly, the CARS algorithm is used to roughly select the original spectral data. Second derivative (SD), Gaussian filtering (GF), and min-max normalization (MMN) pretreatments are then used to improve the correlation between the spectra and As in the characteristic band enhancement stage. Finally, the low-correlation bands are removed using the SCA method, and a subset with absolute correlation values greater than 0.6 is retained as the optimal band subset after each pretreatment. For the modeling, the five most representative characteristic bands were selected in the Honghu area of China, and the nine most representative characteristic bands were selected in the Daye area of China. In order to verify the generalization ability of the proposed algorithm, 92 soil samples from the Honghu and Daye areas were selected as the research objects. With the use of support vector machine regression (SVMR), linear regression (LR), and random forest (RF) regression methods as comparative methods, all the models obtained a good prediction accuracy. However, among the different combinations, CARS-SCA-GBRT obtained the highest precision, which indicates that the proposed algorithm can select fewer characteristic bands to achieve a better inversion effect, and can thus provide accurate data support for the treatment and recovery of heavy metal pollution in soils." @default.
- W2945020384 created "2019-05-29" @default.
- W2945020384 creator A5013133010 @default.
- W2945020384 creator A5027718150 @default.
- W2945020384 creator A5075634203 @default.
- W2945020384 creator A5075903928 @default.
- W2945020384 creator A5081903684 @default.
- W2945020384 creator A5084718593 @default.
- W2945020384 date "2019-05-12" @default.
- W2945020384 modified "2023-10-11" @default.
- W2945020384 title "An Improved Gradient Boosting Regression Tree Estimation Model for Soil Heavy Metal (Arsenic) Pollution Monitoring Using Hyperspectral Remote Sensing" @default.
- W2945020384 cites W1997270149 @default.
- W2945020384 cites W2024046085 @default.
- W2945020384 cites W2025857348 @default.
- W2945020384 cites W2058791926 @default.
- W2945020384 cites W2127842029 @default.
- W2945020384 cites W2169059340 @default.
- W2945020384 cites W2278830514 @default.
- W2945020384 cites W2280655717 @default.
- W2945020384 cites W2464502523 @default.
- W2945020384 cites W2556145204 @default.
- W2945020384 cites W2560029175 @default.
- W2945020384 cites W2587369937 @default.
- W2945020384 cites W2590486621 @default.
- W2945020384 cites W2599811973 @default.
- W2945020384 cites W2745651698 @default.
- W2945020384 cites W2766551349 @default.
- W2945020384 cites W2790261141 @default.
- W2945020384 cites W2802469662 @default.
- W2945020384 cites W2889517076 @default.
- W2945020384 cites W2904698365 @default.
- W2945020384 cites W2905934406 @default.
- W2945020384 doi "https://doi.org/10.3390/app9091943" @default.
- W2945020384 hasPublicationYear "2019" @default.
- W2945020384 type Work @default.
- W2945020384 sameAs 2945020384 @default.
- W2945020384 citedByCount "51" @default.
- W2945020384 countsByYear W29450203842019 @default.
- W2945020384 countsByYear W29450203842020 @default.
- W2945020384 countsByYear W29450203842021 @default.
- W2945020384 countsByYear W29450203842022 @default.
- W2945020384 countsByYear W29450203842023 @default.
- W2945020384 crossrefType "journal-article" @default.
- W2945020384 hasAuthorship W2945020384A5013133010 @default.
- W2945020384 hasAuthorship W2945020384A5027718150 @default.
- W2945020384 hasAuthorship W2945020384A5075634203 @default.
- W2945020384 hasAuthorship W2945020384A5075903928 @default.
- W2945020384 hasAuthorship W2945020384A5081903684 @default.
- W2945020384 hasAuthorship W2945020384A5084718593 @default.
- W2945020384 hasBestOaLocation W29450203841 @default.
- W2945020384 hasConcept C105795698 @default.
- W2945020384 hasConcept C12267149 @default.
- W2945020384 hasConcept C127313418 @default.
- W2945020384 hasConcept C136886441 @default.
- W2945020384 hasConcept C144024400 @default.
- W2945020384 hasConcept C154945302 @default.
- W2945020384 hasConcept C159078339 @default.
- W2945020384 hasConcept C169258074 @default.
- W2945020384 hasConcept C19165224 @default.
- W2945020384 hasConcept C33923547 @default.
- W2945020384 hasConcept C39432304 @default.
- W2945020384 hasConcept C41008148 @default.
- W2945020384 hasConcept C62649853 @default.
- W2945020384 hasConcept C83546350 @default.
- W2945020384 hasConceptScore W2945020384C105795698 @default.
- W2945020384 hasConceptScore W2945020384C12267149 @default.
- W2945020384 hasConceptScore W2945020384C127313418 @default.
- W2945020384 hasConceptScore W2945020384C136886441 @default.
- W2945020384 hasConceptScore W2945020384C144024400 @default.
- W2945020384 hasConceptScore W2945020384C154945302 @default.
- W2945020384 hasConceptScore W2945020384C159078339 @default.
- W2945020384 hasConceptScore W2945020384C169258074 @default.
- W2945020384 hasConceptScore W2945020384C19165224 @default.
- W2945020384 hasConceptScore W2945020384C33923547 @default.
- W2945020384 hasConceptScore W2945020384C39432304 @default.
- W2945020384 hasConceptScore W2945020384C41008148 @default.
- W2945020384 hasConceptScore W2945020384C62649853 @default.
- W2945020384 hasConceptScore W2945020384C83546350 @default.
- W2945020384 hasFunder F4320335595 @default.
- W2945020384 hasFunder F4320335777 @default.
- W2945020384 hasIssue "9" @default.
- W2945020384 hasLocation W29450203841 @default.
- W2945020384 hasLocation W29450203842 @default.
- W2945020384 hasOpenAccess W2945020384 @default.
- W2945020384 hasPrimaryLocation W29450203841 @default.
- W2945020384 hasRelatedWork W2014286142 @default.
- W2945020384 hasRelatedWork W2083270190 @default.
- W2945020384 hasRelatedWork W2122141505 @default.
- W2945020384 hasRelatedWork W2385371209 @default.
- W2945020384 hasRelatedWork W2899084033 @default.
- W2945020384 hasRelatedWork W2948825694 @default.
- W2945020384 hasRelatedWork W2998323711 @default.
- W2945020384 hasRelatedWork W4200112873 @default.
- W2945020384 hasRelatedWork W4224941037 @default.
- W2945020384 hasRelatedWork W1991437568 @default.
- W2945020384 hasVolume "9" @default.
- W2945020384 isParatext "false" @default.
- W2945020384 isRetracted "false" @default.