Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945100684> ?p ?o ?g. }
- W2945100684 endingPage "66608" @default.
- W2945100684 startingPage "66595" @default.
- W2945100684 abstract "With the development of machine learning technology, numerous studies have been proposed to diagnose the open circuit (OC) faults in the pulse width modulation (PWM) voltage source rectifier (VSR) systems. However, most methods require system signals of more than one current period, which show poor real-time performance. Aiming at this problem, this paper presents an improved diagnosis system based on deep belief networks (DBN) and least square support vector machine (LSSVM). First, the double chain quantum genetic algorithm (DCQGA) is employed to obtain the proper length of measured signals and DBN structure parameters. Then, the fault features are extracted from the signals through DBN. Finally, these features are used to train the LSSVM fault classifier to construct the diagnosis model. The experimental results show that the proposed method can achieve the fault diagnosis including six kinds of single switch faults and 15 kinds of different double switches faults correctly. Besides, the proposed method also shows the superior anti-interference performance and high robustness on abrupt load transient conditions, unbalanced, and/or distorted grid voltage conditions, as well as, different power factor conditions. Furthermore, the average diagnostic time of this method is only 2.57 ms." @default.
- W2945100684 created "2019-05-29" @default.
- W2945100684 creator A5011535053 @default.
- W2945100684 creator A5019510221 @default.
- W2945100684 creator A5070917660 @default.
- W2945100684 creator A5083581319 @default.
- W2945100684 date "2019-01-01" @default.
- W2945100684 modified "2023-10-08" @default.
- W2945100684 title "Open Switch Fault Diagnosis Method for PWM Voltage Source Rectifier Based on Deep Learning Approach" @default.
- W2945100684 cites W1596717185 @default.
- W2945100684 cites W1597576211 @default.
- W2945100684 cites W1738306545 @default.
- W2945100684 cites W1968686310 @default.
- W2945100684 cites W1977010324 @default.
- W2945100684 cites W2007650816 @default.
- W2945100684 cites W2010580381 @default.
- W2945100684 cites W2026637527 @default.
- W2945100684 cites W2060912452 @default.
- W2945100684 cites W2076063813 @default.
- W2945100684 cites W2084336274 @default.
- W2945100684 cites W2100495367 @default.
- W2945100684 cites W2114338548 @default.
- W2945100684 cites W2116064496 @default.
- W2945100684 cites W2142263434 @default.
- W2945100684 cites W2145415211 @default.
- W2945100684 cites W2155394476 @default.
- W2945100684 cites W2162827174 @default.
- W2945100684 cites W2167320299 @default.
- W2945100684 cites W2181886201 @default.
- W2945100684 cites W2198841080 @default.
- W2945100684 cites W2205067742 @default.
- W2945100684 cites W2292254049 @default.
- W2945100684 cites W2344576969 @default.
- W2945100684 cites W2404692435 @default.
- W2945100684 cites W2415795929 @default.
- W2945100684 cites W2460312359 @default.
- W2945100684 cites W2511730510 @default.
- W2945100684 cites W2519348275 @default.
- W2945100684 cites W2599646198 @default.
- W2945100684 cites W2604631038 @default.
- W2945100684 cites W2768832461 @default.
- W2945100684 cites W2778304914 @default.
- W2945100684 cites W2782252393 @default.
- W2945100684 cites W2783955989 @default.
- W2945100684 cites W2795765414 @default.
- W2945100684 cites W2795972899 @default.
- W2945100684 cites W2803142415 @default.
- W2945100684 cites W2807530502 @default.
- W2945100684 cites W2883732287 @default.
- W2945100684 cites W309375880 @default.
- W2945100684 doi "https://doi.org/10.1109/access.2019.2917311" @default.
- W2945100684 hasPublicationYear "2019" @default.
- W2945100684 type Work @default.
- W2945100684 sameAs 2945100684 @default.
- W2945100684 citedByCount "28" @default.
- W2945100684 countsByYear W29451006842019 @default.
- W2945100684 countsByYear W29451006842020 @default.
- W2945100684 countsByYear W29451006842021 @default.
- W2945100684 countsByYear W29451006842022 @default.
- W2945100684 countsByYear W29451006842023 @default.
- W2945100684 crossrefType "journal-article" @default.
- W2945100684 hasAuthorship W2945100684A5011535053 @default.
- W2945100684 hasAuthorship W2945100684A5019510221 @default.
- W2945100684 hasAuthorship W2945100684A5070917660 @default.
- W2945100684 hasAuthorship W2945100684A5083581319 @default.
- W2945100684 hasBestOaLocation W29451006841 @default.
- W2945100684 hasConcept C104317684 @default.
- W2945100684 hasConcept C108583219 @default.
- W2945100684 hasConcept C119599485 @default.
- W2945100684 hasConcept C12267149 @default.
- W2945100684 hasConcept C127313418 @default.
- W2945100684 hasConcept C127413603 @default.
- W2945100684 hasConcept C147168706 @default.
- W2945100684 hasConcept C153180895 @default.
- W2945100684 hasConcept C154945302 @default.
- W2945100684 hasConcept C165205528 @default.
- W2945100684 hasConcept C165801399 @default.
- W2945100684 hasConcept C175551986 @default.
- W2945100684 hasConcept C185592680 @default.
- W2945100684 hasConcept C2775924081 @default.
- W2945100684 hasConcept C2778679047 @default.
- W2945100684 hasConcept C41008148 @default.
- W2945100684 hasConcept C47446073 @default.
- W2945100684 hasConcept C50100734 @default.
- W2945100684 hasConcept C50644808 @default.
- W2945100684 hasConcept C55493867 @default.
- W2945100684 hasConcept C63479239 @default.
- W2945100684 hasConcept C86582703 @default.
- W2945100684 hasConcept C92746544 @default.
- W2945100684 hasConcept C97385483 @default.
- W2945100684 hasConceptScore W2945100684C104317684 @default.
- W2945100684 hasConceptScore W2945100684C108583219 @default.
- W2945100684 hasConceptScore W2945100684C119599485 @default.
- W2945100684 hasConceptScore W2945100684C12267149 @default.
- W2945100684 hasConceptScore W2945100684C127313418 @default.
- W2945100684 hasConceptScore W2945100684C127413603 @default.
- W2945100684 hasConceptScore W2945100684C147168706 @default.
- W2945100684 hasConceptScore W2945100684C153180895 @default.