Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945112980> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W2945112980 abstract "In this paper, we present a new data modeling approach for five common classification algorithms to optimize the prediction of telemarketing target calls for selling bank long-term deposits. A Portuguese retail bank addressed, from 2008 until 2013, data on its clients, products and social-economic attributes including the effects of the financial crisis. An original set of 150 features has been explored and 21 features are retained for the proposed approach including label. This paper introduces a new modeling approach that preprocessed separately each type of features and normalize them to optimize prediction performance. To evaluate the proposed approach, this paper compares the results obtained with five most known machine learning techniques: Naive Bayes (NB), Logistic Regression (LR), Decision Trees (DT), Artificial Neural Network (ANN) and Support Vector Machines (SVM) and it yielded better improved performances for all these algorithms in terms of accuracy and f-measure." @default.
- W2945112980 created "2019-05-29" @default.
- W2945112980 creator A5005461581 @default.
- W2945112980 creator A5046549202 @default.
- W2945112980 creator A5076640465 @default.
- W2945112980 date "2019-01-01" @default.
- W2945112980 modified "2023-10-18" @default.
- W2945112980 title "A data modeling approach for classification problems" @default.
- W2945112980 cites W1973142878 @default.
- W2945112980 cites W2034751647 @default.
- W2945112980 cites W2062828236 @default.
- W2945112980 cites W2086148557 @default.
- W2945112980 cites W2128715653 @default.
- W2945112980 cites W2130486630 @default.
- W2945112980 cites W2140898374 @default.
- W2945112980 cites W2563011108 @default.
- W2945112980 cites W2566986225 @default.
- W2945112980 cites W2791030877 @default.
- W2945112980 cites W4232325199 @default.
- W2945112980 doi "https://doi.org/10.1145/3320326.3320389" @default.
- W2945112980 hasPublicationYear "2019" @default.
- W2945112980 type Work @default.
- W2945112980 sameAs 2945112980 @default.
- W2945112980 citedByCount "8" @default.
- W2945112980 countsByYear W29451129802020 @default.
- W2945112980 countsByYear W29451129802021 @default.
- W2945112980 countsByYear W29451129802022 @default.
- W2945112980 crossrefType "proceedings-article" @default.
- W2945112980 hasAuthorship W2945112980A5005461581 @default.
- W2945112980 hasAuthorship W2945112980A5046549202 @default.
- W2945112980 hasAuthorship W2945112980A5076640465 @default.
- W2945112980 hasConcept C124101348 @default.
- W2945112980 hasConcept C154945302 @default.
- W2945112980 hasConcept C41008148 @default.
- W2945112980 hasConcept C67186912 @default.
- W2945112980 hasConcept C77088390 @default.
- W2945112980 hasConceptScore W2945112980C124101348 @default.
- W2945112980 hasConceptScore W2945112980C154945302 @default.
- W2945112980 hasConceptScore W2945112980C41008148 @default.
- W2945112980 hasConceptScore W2945112980C67186912 @default.
- W2945112980 hasConceptScore W2945112980C77088390 @default.
- W2945112980 hasLocation W29451129801 @default.
- W2945112980 hasOpenAccess W2945112980 @default.
- W2945112980 hasPrimaryLocation W29451129801 @default.
- W2945112980 hasRelatedWork W1525948649 @default.
- W2945112980 hasRelatedWork W2097917438 @default.
- W2945112980 hasRelatedWork W2223752138 @default.
- W2945112980 hasRelatedWork W2347219288 @default.
- W2945112980 hasRelatedWork W2348097614 @default.
- W2945112980 hasRelatedWork W2354822586 @default.
- W2945112980 hasRelatedWork W2358841807 @default.
- W2945112980 hasRelatedWork W2366221835 @default.
- W2945112980 hasRelatedWork W3149424243 @default.
- W2945112980 hasRelatedWork W89695409 @default.
- W2945112980 isParatext "false" @default.
- W2945112980 isRetracted "false" @default.
- W2945112980 magId "2945112980" @default.
- W2945112980 workType "article" @default.