Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945177581> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2945177581 abstract "Security primitives based on Dynamic Random Access Memory (DRAM) can provide cost-efficient and practical security solutions, especially for resource-constrained devices, such as hardware used in the Internet of Things (IoT), as DRAMs are an intrinsic part of most contemporary computer systems [1]. Over the past few years, DRAM-based physical unclonable functions became very popular among researchers in this field. However, similar to other types of PUFs, DRAM PUF reliability for authentication and key generation is highly dependent on its resistance against the environmental noises such as Temperature variation, Voltage variations, and Device aging. This paper addresses the challenges related to the reliability and robustness of DRAM PUFs under noisy environments. In this paper we apply a new approach (Quantization) that extracts keys from DRAM startup values with a high reliability and stability rate. This quantization technique identifies suitable features from power-up values of DRAM memories and quantize them into binary bits using tunable parameters that control and predict the environmental noises. Our experimental result shows a high reliability and min-entropy rate for relatively large number of DRAM key bits." @default.
- W2945177581 created "2019-05-29" @default.
- W2945177581 creator A5014914538 @default.
- W2945177581 creator A5090068474 @default.
- W2945177581 date "2019-05-13" @default.
- W2945177581 modified "2023-09-24" @default.
- W2945177581 title "How to Generate Robust Keys from Noisy DRAMs?" @default.
- W2945177581 cites W2000171858 @default.
- W2945177581 cites W2011096548 @default.
- W2945177581 cites W2051451212 @default.
- W2945177581 cites W2057434929 @default.
- W2945177581 cites W2174648984 @default.
- W2945177581 cites W2516218154 @default.
- W2945177581 cites W2525711947 @default.
- W2945177581 cites W2533078038 @default.
- W2945177581 cites W2562000701 @default.
- W2945177581 cites W2794455201 @default.
- W2945177581 cites W2794842046 @default.
- W2945177581 doi "https://doi.org/10.1145/3299874.3319494" @default.
- W2945177581 hasPublicationYear "2019" @default.
- W2945177581 type Work @default.
- W2945177581 sameAs 2945177581 @default.
- W2945177581 citedByCount "5" @default.
- W2945177581 countsByYear W29451775812020 @default.
- W2945177581 countsByYear W29451775812021 @default.
- W2945177581 countsByYear W29451775812022 @default.
- W2945177581 crossrefType "proceedings-article" @default.
- W2945177581 hasAuthorship W2945177581A5014914538 @default.
- W2945177581 hasAuthorship W2945177581A5090068474 @default.
- W2945177581 hasConcept C41008148 @default.
- W2945177581 hasConcept C7366592 @default.
- W2945177581 hasConcept C9390403 @default.
- W2945177581 hasConceptScore W2945177581C41008148 @default.
- W2945177581 hasConceptScore W2945177581C7366592 @default.
- W2945177581 hasConceptScore W2945177581C9390403 @default.
- W2945177581 hasLocation W29451775811 @default.
- W2945177581 hasOpenAccess W2945177581 @default.
- W2945177581 hasPrimaryLocation W29451775811 @default.
- W2945177581 hasRelatedWork W1764185321 @default.
- W2945177581 hasRelatedWork W2041362764 @default.
- W2945177581 hasRelatedWork W2363318782 @default.
- W2945177581 hasRelatedWork W2748952813 @default.
- W2945177581 hasRelatedWork W2790013569 @default.
- W2945177581 hasRelatedWork W2803774757 @default.
- W2945177581 hasRelatedWork W2884336882 @default.
- W2945177581 hasRelatedWork W2947697717 @default.
- W2945177581 hasRelatedWork W4236935565 @default.
- W2945177581 hasRelatedWork W4247353671 @default.
- W2945177581 isParatext "false" @default.
- W2945177581 isRetracted "false" @default.
- W2945177581 magId "2945177581" @default.
- W2945177581 workType "article" @default.