Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945180824> ?p ?o ?g. }
- W2945180824 abstract "Abstract Microbial flow cytometry allows to rapidly characterize microbial communities. Recent research has demonstrated a moderate to strong connection between the cytometric diversity and taxonomic diversity based on 16S rRNA gene amplicon sequencing data. This creates the opportunity to integrate both types of data to study and predict the microbial community diversity in an automated and efficient way. However, microbial flow cytometry data results in a number of unique challenges that need to be addressed. The results of our work are threefold: i) We expand current microbial cytometry fingerprinting approaches by proposing and validating a model-based fingerprinting approach based upon Gaussian Mixture Models, which we called PhenoGMM . ii) We show that microbial diversity can be rapidly estimated by PhenoGMM . In combination with a supervised machine learning model, diversity estimations based on 16S rRNA gene amplicon sequencing data can be predicted. iii) We evaluate our method extensively by using multiple datasets from different ecosystems and compare its predictive power with a generic binning fingerprinting approach that is commonly used in microbial flow cytometry. These results demonstrate the strong connection between the genetic make-up of a microbial community and its phenotypic properties as measured by flow cytometry. Our workflow facilitates the study of microbial diversity and community dynamics using flow cytometry in a fast and quantitative way. Importance Microorganisms are vital components in various ecoystems on Earth. In order to investigate the microbial diversity, researchers have largely relied on the analysis of 16S rRNA gene sequences from DNA. Flow cytometry has been proposed as an alternative technique to characterize microbial community diversity and dynamics. It is an optical technique, able to rapidly characterize a number of phenotypic properties of individual cells. So-called fingerprinting techniques are needed in order to describe microbial community diversity and dynamics based on flow cytometry data. In this work, we propose a more advanced fingerprinting strategy based on Gaussian Mixture Models. When samples have been analyzed by both flow cytometry and 16S rRNA gene amplicon sequencing, we show that supervised machine learning models can be used to find the relationship between the two types of data. We evaluate our workflow on datasets from different ecosystems, illustrating its general applicability for the analysisof microbial flow cytometry data. PhenoGMM facilitates the rapid characterization and predictive modelling of microbial diversity using flow cytometry." @default.
- W2945180824 created "2019-05-29" @default.
- W2945180824 creator A5016375501 @default.
- W2945180824 creator A5018446666 @default.
- W2945180824 creator A5021833980 @default.
- W2945180824 creator A5028945060 @default.
- W2945180824 creator A5047800622 @default.
- W2945180824 date "2019-05-18" @default.
- W2945180824 modified "2023-09-26" @default.
- W2945180824 title "PhenoGMM: Gaussian mixture modelling of microbial cytometry data enables efficient predictions of biodiversity" @default.
- W2945180824 cites W1938292773 @default.
- W2945180824 cites W1977200679 @default.
- W2945180824 cites W1982211257 @default.
- W2945180824 cites W1983820043 @default.
- W2945180824 cites W1988574274 @default.
- W2945180824 cites W2018086140 @default.
- W2945180824 cites W2022825068 @default.
- W2945180824 cites W2023750406 @default.
- W2945180824 cites W2037560033 @default.
- W2945180824 cites W2044633817 @default.
- W2945180824 cites W2084821192 @default.
- W2945180824 cites W2087844075 @default.
- W2945180824 cites W2097737597 @default.
- W2945180824 cites W2112493011 @default.
- W2945180824 cites W2122825543 @default.
- W2945180824 cites W2126423620 @default.
- W2945180824 cites W2140066965 @default.
- W2945180824 cites W2144063472 @default.
- W2945180824 cites W2147618390 @default.
- W2945180824 cites W2284155899 @default.
- W2945180824 cites W2316762379 @default.
- W2945180824 cites W2319571072 @default.
- W2945180824 cites W2321361127 @default.
- W2945180824 cites W2343458337 @default.
- W2945180824 cites W2467532039 @default.
- W2945180824 cites W2511739150 @default.
- W2945180824 cites W2516350521 @default.
- W2945180824 cites W2519132385 @default.
- W2945180824 cites W2527152597 @default.
- W2945180824 cites W2536527863 @default.
- W2945180824 cites W2560136348 @default.
- W2945180824 cites W2578965270 @default.
- W2945180824 cites W2582169429 @default.
- W2945180824 cites W2731087015 @default.
- W2945180824 cites W2763889010 @default.
- W2945180824 cites W2769500510 @default.
- W2945180824 cites W2770269406 @default.
- W2945180824 cites W2776411354 @default.
- W2945180824 cites W2791004613 @default.
- W2945180824 cites W2794904294 @default.
- W2945180824 cites W2801229372 @default.
- W2945180824 cites W2801868119 @default.
- W2945180824 cites W2871625235 @default.
- W2945180824 cites W2876490577 @default.
- W2945180824 cites W2895616504 @default.
- W2945180824 cites W2950751688 @default.
- W2945180824 cites W2951566836 @default.
- W2945180824 cites W2994633897 @default.
- W2945180824 cites W4300009529 @default.
- W2945180824 doi "https://doi.org/10.1101/641464" @default.
- W2945180824 hasPublicationYear "2019" @default.
- W2945180824 type Work @default.
- W2945180824 sameAs 2945180824 @default.
- W2945180824 citedByCount "2" @default.
- W2945180824 countsByYear W29451808242019 @default.
- W2945180824 countsByYear W29451808242020 @default.
- W2945180824 crossrefType "posted-content" @default.
- W2945180824 hasAuthorship W2945180824A5016375501 @default.
- W2945180824 hasAuthorship W2945180824A5018446666 @default.
- W2945180824 hasAuthorship W2945180824A5021833980 @default.
- W2945180824 hasAuthorship W2945180824A5028945060 @default.
- W2945180824 hasAuthorship W2945180824A5047800622 @default.
- W2945180824 hasBestOaLocation W29451808241 @default.
- W2945180824 hasConcept C104317684 @default.
- W2945180824 hasConcept C124101348 @default.
- W2945180824 hasConcept C41008148 @default.
- W2945180824 hasConcept C49105822 @default.
- W2945180824 hasConcept C54355233 @default.
- W2945180824 hasConcept C70721500 @default.
- W2945180824 hasConcept C8185291 @default.
- W2945180824 hasConcept C86803240 @default.
- W2945180824 hasConceptScore W2945180824C104317684 @default.
- W2945180824 hasConceptScore W2945180824C124101348 @default.
- W2945180824 hasConceptScore W2945180824C41008148 @default.
- W2945180824 hasConceptScore W2945180824C49105822 @default.
- W2945180824 hasConceptScore W2945180824C54355233 @default.
- W2945180824 hasConceptScore W2945180824C70721500 @default.
- W2945180824 hasConceptScore W2945180824C8185291 @default.
- W2945180824 hasConceptScore W2945180824C86803240 @default.
- W2945180824 hasLocation W29451808241 @default.
- W2945180824 hasOpenAccess W2945180824 @default.
- W2945180824 hasPrimaryLocation W29451808241 @default.
- W2945180824 hasRelatedWork W1878521557 @default.
- W2945180824 hasRelatedWork W1891411045 @default.
- W2945180824 hasRelatedWork W2005963332 @default.
- W2945180824 hasRelatedWork W2018697469 @default.
- W2945180824 hasRelatedWork W2576317572 @default.
- W2945180824 hasRelatedWork W2761479686 @default.
- W2945180824 hasRelatedWork W2762743154 @default.
- W2945180824 hasRelatedWork W2884300026 @default.