Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945187852> ?p ?o ?g. }
- W2945187852 endingPage "320" @default.
- W2945187852 startingPage "309" @default.
- W2945187852 abstract "A novel approach to prototype selection for multi-output regression data sets is presented. A multi-objective evolutionary algorithm is used to evaluate the selections using two criteria: training data set compression and prediction quality expressed in terms of root mean squared error. A multi-target regressor based on k-NN was used for that purpose during the training to evaluate the error, while the tests were performed using four different multi-target predictive models. The distance matrices used by the multi-target regressor were cached to accelerate operational performance. Multiple Pareto fronts were also used to prevent overfitting and to obtain a broader range of solutions, by using different probabilities in the initialization of populations and different evolutionary parameters in each one. The results obtained with the benchmark data sets showed that the proposed method greatly reduced data set size and, at the same time, improved the predictive capabilities of the multi-output regressors trained on the reduced data set." @default.
- W2945187852 created "2019-05-29" @default.
- W2945187852 creator A5013580074 @default.
- W2945187852 creator A5019094442 @default.
- W2945187852 creator A5020290167 @default.
- W2945187852 date "2019-09-01" @default.
- W2945187852 modified "2023-10-14" @default.
- W2945187852 title "Evolutionary prototype selection for multi-output regression" @default.
- W2945187852 cites W1965551184 @default.
- W2945187852 cites W1986104317 @default.
- W2945187852 cites W1986159170 @default.
- W2945187852 cites W1994410331 @default.
- W2945187852 cites W1997188340 @default.
- W2945187852 cites W1999954155 @default.
- W2945187852 cites W2004362343 @default.
- W2945187852 cites W2011307992 @default.
- W2945187852 cites W2011762057 @default.
- W2945187852 cites W2030751442 @default.
- W2945187852 cites W2051808767 @default.
- W2945187852 cites W2076877989 @default.
- W2945187852 cites W2107686700 @default.
- W2945187852 cites W2115012618 @default.
- W2945187852 cites W2122496402 @default.
- W2945187852 cites W2122702721 @default.
- W2945187852 cites W2126105956 @default.
- W2945187852 cites W2135547590 @default.
- W2945187852 cites W2145279172 @default.
- W2945187852 cites W2146241755 @default.
- W2945187852 cites W2150957202 @default.
- W2945187852 cites W2151537585 @default.
- W2945187852 cites W2158724449 @default.
- W2945187852 cites W2165232124 @default.
- W2945187852 cites W2166106466 @default.
- W2945187852 cites W2346153116 @default.
- W2945187852 cites W2408839727 @default.
- W2945187852 cites W2587428921 @default.
- W2945187852 cites W2599194736 @default.
- W2945187852 cites W2739512903 @default.
- W2945187852 cites W2790825252 @default.
- W2945187852 cites W2793659452 @default.
- W2945187852 cites W2802953259 @default.
- W2945187852 cites W2804834692 @default.
- W2945187852 cites W2963877232 @default.
- W2945187852 cites W3124484778 @default.
- W2945187852 doi "https://doi.org/10.1016/j.neucom.2019.05.055" @default.
- W2945187852 hasPublicationYear "2019" @default.
- W2945187852 type Work @default.
- W2945187852 sameAs 2945187852 @default.
- W2945187852 citedByCount "15" @default.
- W2945187852 countsByYear W29451878522020 @default.
- W2945187852 countsByYear W29451878522021 @default.
- W2945187852 countsByYear W29451878522022 @default.
- W2945187852 countsByYear W29451878522023 @default.
- W2945187852 crossrefType "journal-article" @default.
- W2945187852 hasAuthorship W2945187852A5013580074 @default.
- W2945187852 hasAuthorship W2945187852A5019094442 @default.
- W2945187852 hasAuthorship W2945187852A5020290167 @default.
- W2945187852 hasBestOaLocation W29451878521 @default.
- W2945187852 hasConcept C105795698 @default.
- W2945187852 hasConcept C114466953 @default.
- W2945187852 hasConcept C119857082 @default.
- W2945187852 hasConcept C124101348 @default.
- W2945187852 hasConcept C13280743 @default.
- W2945187852 hasConcept C139945424 @default.
- W2945187852 hasConcept C154945302 @default.
- W2945187852 hasConcept C159149176 @default.
- W2945187852 hasConcept C167085575 @default.
- W2945187852 hasConcept C177264268 @default.
- W2945187852 hasConcept C185798385 @default.
- W2945187852 hasConcept C199360897 @default.
- W2945187852 hasConcept C205649164 @default.
- W2945187852 hasConcept C22019652 @default.
- W2945187852 hasConcept C33923547 @default.
- W2945187852 hasConcept C41008148 @default.
- W2945187852 hasConcept C50644808 @default.
- W2945187852 hasConcept C51632099 @default.
- W2945187852 hasConcept C58489278 @default.
- W2945187852 hasConcept C81917197 @default.
- W2945187852 hasConcept C83546350 @default.
- W2945187852 hasConceptScore W2945187852C105795698 @default.
- W2945187852 hasConceptScore W2945187852C114466953 @default.
- W2945187852 hasConceptScore W2945187852C119857082 @default.
- W2945187852 hasConceptScore W2945187852C124101348 @default.
- W2945187852 hasConceptScore W2945187852C13280743 @default.
- W2945187852 hasConceptScore W2945187852C139945424 @default.
- W2945187852 hasConceptScore W2945187852C154945302 @default.
- W2945187852 hasConceptScore W2945187852C159149176 @default.
- W2945187852 hasConceptScore W2945187852C167085575 @default.
- W2945187852 hasConceptScore W2945187852C177264268 @default.
- W2945187852 hasConceptScore W2945187852C185798385 @default.
- W2945187852 hasConceptScore W2945187852C199360897 @default.
- W2945187852 hasConceptScore W2945187852C205649164 @default.
- W2945187852 hasConceptScore W2945187852C22019652 @default.
- W2945187852 hasConceptScore W2945187852C33923547 @default.
- W2945187852 hasConceptScore W2945187852C41008148 @default.
- W2945187852 hasConceptScore W2945187852C50644808 @default.
- W2945187852 hasConceptScore W2945187852C51632099 @default.
- W2945187852 hasConceptScore W2945187852C58489278 @default.