Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945208055> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2945208055 endingPage "10" @default.
- W2945208055 startingPage "1" @default.
- W2945208055 abstract "Abstract One of the cornerstones of content-based image retrieval (CBIR) for medical image diagnosis is to select the images that present higher similarity with a given query image. Different from previous literature efforts, the present work aims to seamlessly fuse a powerful machine learning strategy based on the active learning paradigm, in order to obtain greater efficacy regarding similarity queries in medical CBIR systems. To do so, we propose a new approach, named as Medical Active leaRning and Retrieval (MARRow) to aid the breast cancer diagnosis. It enables to deal with more feasible strategies, specifically for the medical context and its inherent constraints. We also proposed an active learning strategy to select a small set of more informative images, considering selection criteria based on not only similarity, but also on certain degrees of diversity and uncertainty. To validate our proposed approach, we performed experiments using public medical image datasets, different descriptors for each one and compared our approach against four widely applied and well-known literature approaches, such as: Traditional CBIR without relevance feedback strategies, Query Point Movement Strategy (QPM), Query Expansion (QEX) and SVM Active Learning (SVM-AL). From the experiments, we can observe that our approach presents a strong performance over state-of-the-art ones reaching a precision gain of up to 87.3%. MARRow also presented a well-suited and consistent increasing rate along the learning iterations. Moreover, our approach can significantly minimize the expert’s involvement in the analysis and annotation process (reducing up to 88%). The results testify that MARRow improves the precision of the similarity queries. It is capable to explore at the maximum the experts’ intentions, which are captured during the relevance feedback process, incrementally improving the learning model. Therefore, our approach can be suitable and applied in challenging processes, such as real and medical contexts, enhancing medical decision support systems (e.g. breast cancer diagnosis)." @default.
- W2945208055 created "2019-05-29" @default.
- W2945208055 creator A5038999508 @default.
- W2945208055 creator A5065155873 @default.
- W2945208055 creator A5085844351 @default.
- W2945208055 date "2019-09-01" @default.
- W2945208055 modified "2023-10-17" @default.
- W2945208055 title "Breast cancer diagnosis through active learning in content-based image retrieval" @default.
- W2945208055 cites W1965163018 @default.
- W2945208055 cites W1972508834 @default.
- W2945208055 cites W1985636418 @default.
- W2945208055 cites W1993692165 @default.
- W2945208055 cites W1997028180 @default.
- W2945208055 cites W2011549082 @default.
- W2945208055 cites W2044465660 @default.
- W2945208055 cites W2047805666 @default.
- W2945208055 cites W2061079740 @default.
- W2945208055 cites W2118376687 @default.
- W2945208055 cites W2154191424 @default.
- W2945208055 cites W2154823510 @default.
- W2945208055 cites W2770018998 @default.
- W2945208055 cites W2791036655 @default.
- W2945208055 cites W2792902314 @default.
- W2945208055 cites W2803696107 @default.
- W2945208055 cites W2808396735 @default.
- W2945208055 cites W2885669402 @default.
- W2945208055 doi "https://doi.org/10.1016/j.neucom.2019.05.041" @default.
- W2945208055 hasPublicationYear "2019" @default.
- W2945208055 type Work @default.
- W2945208055 sameAs 2945208055 @default.
- W2945208055 citedByCount "23" @default.
- W2945208055 countsByYear W29452080552019 @default.
- W2945208055 countsByYear W29452080552020 @default.
- W2945208055 countsByYear W29452080552021 @default.
- W2945208055 countsByYear W29452080552022 @default.
- W2945208055 countsByYear W29452080552023 @default.
- W2945208055 crossrefType "journal-article" @default.
- W2945208055 hasAuthorship W2945208055A5038999508 @default.
- W2945208055 hasAuthorship W2945208055A5065155873 @default.
- W2945208055 hasAuthorship W2945208055A5085844351 @default.
- W2945208055 hasConcept C115961682 @default.
- W2945208055 hasConcept C121608353 @default.
- W2945208055 hasConcept C126322002 @default.
- W2945208055 hasConcept C154945302 @default.
- W2945208055 hasConcept C1667742 @default.
- W2945208055 hasConcept C23123220 @default.
- W2945208055 hasConcept C2780052074 @default.
- W2945208055 hasConcept C41008148 @default.
- W2945208055 hasConcept C71924100 @default.
- W2945208055 hasConceptScore W2945208055C115961682 @default.
- W2945208055 hasConceptScore W2945208055C121608353 @default.
- W2945208055 hasConceptScore W2945208055C126322002 @default.
- W2945208055 hasConceptScore W2945208055C154945302 @default.
- W2945208055 hasConceptScore W2945208055C1667742 @default.
- W2945208055 hasConceptScore W2945208055C23123220 @default.
- W2945208055 hasConceptScore W2945208055C2780052074 @default.
- W2945208055 hasConceptScore W2945208055C41008148 @default.
- W2945208055 hasConceptScore W2945208055C71924100 @default.
- W2945208055 hasFunder F4320322025 @default.
- W2945208055 hasLocation W29452080551 @default.
- W2945208055 hasOpenAccess W2945208055 @default.
- W2945208055 hasPrimaryLocation W29452080551 @default.
- W2945208055 hasRelatedWork W1825808266 @default.
- W2945208055 hasRelatedWork W2066602128 @default.
- W2945208055 hasRelatedWork W2159851394 @default.
- W2945208055 hasRelatedWork W2162490675 @default.
- W2945208055 hasRelatedWork W2168698906 @default.
- W2945208055 hasRelatedWork W2171664302 @default.
- W2945208055 hasRelatedWork W2368698191 @default.
- W2945208055 hasRelatedWork W2519881370 @default.
- W2945208055 hasRelatedWork W2734627150 @default.
- W2945208055 hasRelatedWork W4289885437 @default.
- W2945208055 hasVolume "357" @default.
- W2945208055 isParatext "false" @default.
- W2945208055 isRetracted "false" @default.
- W2945208055 magId "2945208055" @default.
- W2945208055 workType "article" @default.