Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945232008> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2945232008 abstract "In fringe projection profilometry (FPP), multi-frequency phase unwrapping, as a classical algorithm for temporal phase unwrapping (TPU), can eliminate the phase ambiguities and obtain the unwrapped phase with the aid of additional wrapped phase maps with different fringe periods. However, based on the principle of multi-frequency phase unwrapping, it needs multiple groups of fringe patterns with different fringe periods to eliminate the phase ambiguities of the wrapped phase with high-frequency, which is not suitable for high-speed 3D measurement. If two frequency fringe patterns are only projected, the reliability of multi-frequency phase unwrapping will be decreased significantly. Inspired by deep learning techniques, in this study, we demonstrate that the deep neural networks can learn to perform temporal phase unwrapping after appropriate training, which substantially improves the reliability of phase unwrapping compared with the traditional multi-frequency TPU approach even when high-frequency fringe patterns are used. In our experiment, a challenging problem in TPU is that the unwrapped phase of 64-period fringe patterns cannot be directly unwrapped by only using a single-frequency phase, but it can be easily resolved by our method. Experimental results demonstrate the temporal phase unwrapping method using deep learning provides the best unwrapping reliability to realize the absolute 3D measurement for objects with complex surfaces." @default.
- W2945232008 created "2019-05-29" @default.
- W2945232008 creator A5006191558 @default.
- W2945232008 creator A5014702970 @default.
- W2945232008 creator A5061719118 @default.
- W2945232008 creator A5068290128 @default.
- W2945232008 creator A5080935585 @default.
- W2945232008 date "2019-05-13" @default.
- W2945232008 modified "2023-09-23" @default.
- W2945232008 title "Bi-frequency temporal phase unwrapping using deep learning" @default.
- W2945232008 cites W1990613440 @default.
- W2945232008 cites W2011070003 @default.
- W2945232008 cites W2052969504 @default.
- W2945232008 cites W2061577342 @default.
- W2945232008 cites W2127996129 @default.
- W2945232008 cites W2345939069 @default.
- W2945232008 cites W2750021228 @default.
- W2945232008 cites W2791731233 @default.
- W2945232008 cites W2892786419 @default.
- W2945232008 doi "https://doi.org/10.1117/12.2520201" @default.
- W2945232008 hasPublicationYear "2019" @default.
- W2945232008 type Work @default.
- W2945232008 sameAs 2945232008 @default.
- W2945232008 citedByCount "2" @default.
- W2945232008 countsByYear W29452320082020 @default.
- W2945232008 countsByYear W29452320082021 @default.
- W2945232008 crossrefType "proceedings-article" @default.
- W2945232008 hasAuthorship W2945232008A5006191558 @default.
- W2945232008 hasAuthorship W2945232008A5014702970 @default.
- W2945232008 hasAuthorship W2945232008A5061719118 @default.
- W2945232008 hasAuthorship W2945232008A5068290128 @default.
- W2945232008 hasAuthorship W2945232008A5080935585 @default.
- W2945232008 hasConcept C108583219 @default.
- W2945232008 hasConcept C120665830 @default.
- W2945232008 hasConcept C121332964 @default.
- W2945232008 hasConcept C127413603 @default.
- W2945232008 hasConcept C154945302 @default.
- W2945232008 hasConcept C163258240 @default.
- W2945232008 hasConcept C166689943 @default.
- W2945232008 hasConcept C184577583 @default.
- W2945232008 hasConcept C2776521118 @default.
- W2945232008 hasConcept C2779751349 @default.
- W2945232008 hasConcept C3020654733 @default.
- W2945232008 hasConcept C31972630 @default.
- W2945232008 hasConcept C41008148 @default.
- W2945232008 hasConcept C43214815 @default.
- W2945232008 hasConcept C44280652 @default.
- W2945232008 hasConcept C62520636 @default.
- W2945232008 hasConcept C71039073 @default.
- W2945232008 hasConcept C78519656 @default.
- W2945232008 hasConcept C79261456 @default.
- W2945232008 hasConceptScore W2945232008C108583219 @default.
- W2945232008 hasConceptScore W2945232008C120665830 @default.
- W2945232008 hasConceptScore W2945232008C121332964 @default.
- W2945232008 hasConceptScore W2945232008C127413603 @default.
- W2945232008 hasConceptScore W2945232008C154945302 @default.
- W2945232008 hasConceptScore W2945232008C163258240 @default.
- W2945232008 hasConceptScore W2945232008C166689943 @default.
- W2945232008 hasConceptScore W2945232008C184577583 @default.
- W2945232008 hasConceptScore W2945232008C2776521118 @default.
- W2945232008 hasConceptScore W2945232008C2779751349 @default.
- W2945232008 hasConceptScore W2945232008C3020654733 @default.
- W2945232008 hasConceptScore W2945232008C31972630 @default.
- W2945232008 hasConceptScore W2945232008C41008148 @default.
- W2945232008 hasConceptScore W2945232008C43214815 @default.
- W2945232008 hasConceptScore W2945232008C44280652 @default.
- W2945232008 hasConceptScore W2945232008C62520636 @default.
- W2945232008 hasConceptScore W2945232008C71039073 @default.
- W2945232008 hasConceptScore W2945232008C78519656 @default.
- W2945232008 hasConceptScore W2945232008C79261456 @default.
- W2945232008 hasLocation W29452320081 @default.
- W2945232008 hasOpenAccess W2945232008 @default.
- W2945232008 hasPrimaryLocation W29452320081 @default.
- W2945232008 hasRelatedWork W1963852208 @default.
- W2945232008 hasRelatedWork W2034296845 @default.
- W2945232008 hasRelatedWork W2068685527 @default.
- W2945232008 hasRelatedWork W2084721301 @default.
- W2945232008 hasRelatedWork W2323475746 @default.
- W2945232008 hasRelatedWork W2345939069 @default.
- W2945232008 hasRelatedWork W2468546358 @default.
- W2945232008 hasRelatedWork W2899402557 @default.
- W2945232008 hasRelatedWork W2925014384 @default.
- W2945232008 hasRelatedWork W2943648317 @default.
- W2945232008 hasRelatedWork W2979855783 @default.
- W2945232008 hasRelatedWork W2984909086 @default.
- W2945232008 hasRelatedWork W3015115244 @default.
- W2945232008 hasRelatedWork W3091891475 @default.
- W2945232008 hasRelatedWork W3092928937 @default.
- W2945232008 hasRelatedWork W3169918850 @default.
- W2945232008 hasRelatedWork W3210198853 @default.
- W2945232008 hasRelatedWork W404029733 @default.
- W2945232008 hasRelatedWork W2835690921 @default.
- W2945232008 hasRelatedWork W3092189800 @default.
- W2945232008 isParatext "false" @default.
- W2945232008 isRetracted "false" @default.
- W2945232008 magId "2945232008" @default.
- W2945232008 workType "article" @default.