Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945233164> ?p ?o ?g. }
- W2945233164 endingPage "64721" @default.
- W2945233164 startingPage "64704" @default.
- W2945233164 abstract "Lung cancer is the major cause of cancer-related deaths worldwide with poor survival due to the poor diagnostic system at the advanced cancer stage. In the past, researchers developed computer-aided diagnosis (CAD) systems, which were greatly used by the radiologist for identifying the abnormalities and applied few features extracting methods. The physiology and behavior of various physiological systems can be best investigated using nonlinear dynamical measures for capturing the intrinsic dynamics, which is influenced due to multiple pathologies by the degradation of structural and functional components. As cancer images contain hidden information, which can be best analyzed using these dynamical measures. In this paper, we proposed multiscale sample entropy (MSE) with a mean and KD-tree algorithmic approach, multiscale permutation entropy (MPE), multiscale fuzzy entropy (MFE), and refined composite multiscale fuzzy entropy (RCMFE) with mean, variance, and standard deviation. The statistically significant results were computed to distinguish non-small-cell lung cancer (NSCLC) from SCLC by extracting morphological, texture, and elliptic Fourier descriptors (EFDs). The highest significant results obtained based on texture features using MFE with standard deviation give the P-value of 1.95E-50, morphological features using RCMFE with mean provide the P-value of 3.01E-14, and EFDs features using MFE with variance give the P-value of 1.04E-13. The results reveal that the improved complexity measures based on refined fuzzy entropy outperformed in analyzing the dynamics of lung cancer and will provide a new insight into extract meaningful hidden information present in the Lung cancer images, which will be very helpful to further distinguish NSCLC and SCLC for early diagnosis and prognosis." @default.
- W2945233164 created "2019-05-29" @default.
- W2945233164 creator A5013233350 @default.
- W2945233164 creator A5048223919 @default.
- W2945233164 creator A5059854961 @default.
- W2945233164 creator A5064562623 @default.
- W2945233164 creator A5082350603 @default.
- W2945233164 creator A5084999270 @default.
- W2945233164 date "2019-01-01" @default.
- W2945233164 modified "2023-10-17" @default.
- W2945233164 title "Analyzing the Dynamics of Lung Cancer Imaging Data Using Refined Fuzzy Entropy Methods by Extracting Different Features" @default.
- W2945233164 cites W117168719 @default.
- W2945233164 cites W119130974 @default.
- W2945233164 cites W1509760724 @default.
- W2945233164 cites W1512161016 @default.
- W2945233164 cites W1567608978 @default.
- W2945233164 cites W1601755406 @default.
- W2945233164 cites W1818678634 @default.
- W2945233164 cites W1860388723 @default.
- W2945233164 cites W186433405 @default.
- W2945233164 cites W1907176958 @default.
- W2945233164 cites W1909184065 @default.
- W2945233164 cites W1973581302 @default.
- W2945233164 cites W1977436378 @default.
- W2945233164 cites W1987740763 @default.
- W2945233164 cites W1988184741 @default.
- W2945233164 cites W1989528357 @default.
- W2945233164 cites W1992747785 @default.
- W2945233164 cites W2000943526 @default.
- W2945233164 cites W2002446391 @default.
- W2945233164 cites W2002634573 @default.
- W2945233164 cites W2004195339 @default.
- W2945233164 cites W2007979658 @default.
- W2945233164 cites W2014683958 @default.
- W2945233164 cites W2019018365 @default.
- W2945233164 cites W2021938274 @default.
- W2945233164 cites W2022654536 @default.
- W2945233164 cites W2023112529 @default.
- W2945233164 cites W2029401646 @default.
- W2945233164 cites W2029532650 @default.
- W2945233164 cites W2035107885 @default.
- W2945233164 cites W2040162990 @default.
- W2945233164 cites W2042724634 @default.
- W2945233164 cites W2046514644 @default.
- W2945233164 cites W2049278139 @default.
- W2945233164 cites W2051688318 @default.
- W2945233164 cites W2056253243 @default.
- W2945233164 cites W2059851411 @default.
- W2945233164 cites W2060700639 @default.
- W2945233164 cites W2061932411 @default.
- W2945233164 cites W2073630396 @default.
- W2945233164 cites W2074189988 @default.
- W2945233164 cites W2076760682 @default.
- W2945233164 cites W2077204677 @default.
- W2945233164 cites W2091151456 @default.
- W2945233164 cites W2093266575 @default.
- W2945233164 cites W2094058963 @default.
- W2945233164 cites W2094273895 @default.
- W2945233164 cites W2096482056 @default.
- W2945233164 cites W2099253838 @default.
- W2945233164 cites W2100611943 @default.
- W2945233164 cites W2104324787 @default.
- W2945233164 cites W2109711012 @default.
- W2945233164 cites W2115235491 @default.
- W2945233164 cites W2115293379 @default.
- W2945233164 cites W2118019849 @default.
- W2945233164 cites W2129447992 @default.
- W2945233164 cites W2132048066 @default.
- W2945233164 cites W2133849899 @default.
- W2945233164 cites W2134711623 @default.
- W2945233164 cites W2144349513 @default.
- W2945233164 cites W2149381708 @default.
- W2945233164 cites W2150655252 @default.
- W2945233164 cites W2151103935 @default.
- W2945233164 cites W2156648012 @default.
- W2945233164 cites W2157881370 @default.
- W2945233164 cites W2157897991 @default.
- W2945233164 cites W2162025846 @default.
- W2945233164 cites W2164104048 @default.
- W2945233164 cites W2167533099 @default.
- W2945233164 cites W2168764150 @default.
- W2945233164 cites W2183389629 @default.
- W2945233164 cites W2244130513 @default.
- W2945233164 cites W2269135633 @default.
- W2945233164 cites W2273310283 @default.
- W2945233164 cites W2340102874 @default.
- W2945233164 cites W2461134574 @default.
- W2945233164 cites W2461649332 @default.
- W2945233164 cites W2466033276 @default.
- W2945233164 cites W2515562576 @default.
- W2945233164 cites W2535650875 @default.
- W2945233164 cites W2541204346 @default.
- W2945233164 cites W2554171173 @default.
- W2945233164 cites W2601980902 @default.
- W2945233164 cites W2617938108 @default.
- W2945233164 cites W2659698999 @default.
- W2945233164 cites W2741213928 @default.
- W2945233164 cites W2773413394 @default.