Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945244911> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2945244911 abstract "Given a graph $H$, the Tur'an number $ex(n,H)$ is the largest number of edges in an $H$-free graph on $n$ vertices. We make progress on a recent conjecture of Conlon, Janzer, and Lee on the Tur'an numbers of bipartite graphs, which in turn yields further progress on a conjecture of ErdH{o}s and Simonovits. Let $s,t,kgeq 2$ be integers. Let $K_{s,t}^k$ denote the graph obtained from the complete bipartite graph $K_{s,t}$ by replacing each edge $uv$ in it with a path of length $k$ between $u$ and $v$ such that the $st$ replacing paths are internally disjoint. It follows from a general theorem of Bukh and Conlon that $ex(n,K_{s,t}^k)=Omega(n^{1+frac{1}{k}-frac{1}{sk}})$. Conlon, Janzer, and Lee recently conjectured that for any integers $s,t,kgeq 2$, $ex(n,K_{s,t}^k)=O(n^{1+frac{1}{k}-frac{1}{sk}})$. Among many other things, they settled the $k=2$ case of their conjecture. As the main result of this paper, we prove their conjecture for $k=3,4$. Our main results also yield infinitely many new so-called Tur'an exponents: rationals $rin (1,2)$ for which there exists a bipartite graph $H$ with $ex(n, H)=Theta(n^r)$, adding to the lists recently obtained by Jiang, Ma, Yepremyan, by Kang, Kim, Liu, and by Conlon, Janzer, Lee. Our method builds on an extension of the Conlon-Janzer-Lee method. We also note that the extended method also gives a weaker version of the Conlon-Janzer-Lee conjecture for all $kgeq 2$." @default.
- W2945244911 created "2019-05-29" @default.
- W2945244911 creator A5009439657 @default.
- W2945244911 creator A5074903674 @default.
- W2945244911 date "2019-05-22" @default.
- W2945244911 modified "2023-09-25" @default.
- W2945244911 title "Turan numbers of bipartite subdivisions" @default.
- W2945244911 cites W1704482318 @default.
- W2945244911 cites W1775811824 @default.
- W2945244911 cites W1966571632 @default.
- W2945244911 cites W1983946246 @default.
- W2945244911 cites W1995481390 @default.
- W2945244911 cites W1996268095 @default.
- W2945244911 cites W2009852526 @default.
- W2945244911 cites W2035971565 @default.
- W2945244911 cites W2080305978 @default.
- W2945244911 cites W2111007781 @default.
- W2945244911 cites W2148275926 @default.
- W2945244911 cites W2155085924 @default.
- W2945244911 cites W2798415593 @default.
- W2945244911 cites W2962749650 @default.
- W2945244911 cites W2964049215 @default.
- W2945244911 cites W2986768019 @default.
- W2945244911 cites W3000117194 @default.
- W2945244911 cites W3100868007 @default.
- W2945244911 cites W3193795880 @default.
- W2945244911 doi "https://doi.org/10.48550/arxiv.1905.08994" @default.
- W2945244911 hasPublicationYear "2019" @default.
- W2945244911 type Work @default.
- W2945244911 sameAs 2945244911 @default.
- W2945244911 citedByCount "1" @default.
- W2945244911 countsByYear W29452449112019 @default.
- W2945244911 crossrefType "posted-content" @default.
- W2945244911 hasAuthorship W2945244911A5009439657 @default.
- W2945244911 hasAuthorship W2945244911A5074903674 @default.
- W2945244911 hasBestOaLocation W29452449111 @default.
- W2945244911 hasConcept C114614502 @default.
- W2945244911 hasConcept C118615104 @default.
- W2945244911 hasConcept C132525143 @default.
- W2945244911 hasConcept C134119311 @default.
- W2945244911 hasConcept C197657726 @default.
- W2945244911 hasConcept C2780990831 @default.
- W2945244911 hasConcept C33923547 @default.
- W2945244911 hasConcept C45340560 @default.
- W2945244911 hasConceptScore W2945244911C114614502 @default.
- W2945244911 hasConceptScore W2945244911C118615104 @default.
- W2945244911 hasConceptScore W2945244911C132525143 @default.
- W2945244911 hasConceptScore W2945244911C134119311 @default.
- W2945244911 hasConceptScore W2945244911C197657726 @default.
- W2945244911 hasConceptScore W2945244911C2780990831 @default.
- W2945244911 hasConceptScore W2945244911C33923547 @default.
- W2945244911 hasConceptScore W2945244911C45340560 @default.
- W2945244911 hasLocation W29452449111 @default.
- W2945244911 hasOpenAccess W2945244911 @default.
- W2945244911 hasPrimaryLocation W29452449111 @default.
- W2945244911 hasRelatedWork W2091179680 @default.
- W2945244911 hasRelatedWork W2945244911 @default.
- W2945244911 hasRelatedWork W2963091545 @default.
- W2945244911 hasRelatedWork W3010398943 @default.
- W2945244911 hasRelatedWork W3105144174 @default.
- W2945244911 hasRelatedWork W4226523359 @default.
- W2945244911 hasRelatedWork W4249337121 @default.
- W2945244911 hasRelatedWork W4253608841 @default.
- W2945244911 hasRelatedWork W4288280572 @default.
- W2945244911 hasRelatedWork W4301344670 @default.
- W2945244911 isParatext "false" @default.
- W2945244911 isRetracted "false" @default.
- W2945244911 magId "2945244911" @default.
- W2945244911 workType "article" @default.