Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945254726> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2945254726 abstract "Identification of causal direction between a causal-effect pair from observed data has recently attracted much attention. Various methods based on functional causal models have been proposed to solve this problem, by assuming the causal process satisfies some (structural) constraints and showing that the reverse direction violates such constraints. The nonlinear additive noise model has been demonstrated to be effective for this purpose, but the model class is not transitive--even if each direct causal relation follows this model, indirect causal influences, which result from omitted intermediate causal variables and are frequently encountered in practice, do not necessarily follow the model constraints; as a consequence, the nonlinear additive noise model may fail to correctly discover causal direction. In this work, we propose a cascade nonlinear additive noise model to represent such causal influences--each direct causal relation follows the nonlinear additive noise model but we observe only the initial cause and final effect. We further propose a method to estimate the model, including the unmeasured intermediate variables, from data, under the variational auto-encoder framework. Our theoretical results show that with our model, causal direction is identifiable under suitable technical conditions on the data generation process. Simulation results illustrate the power of the proposed method in identifying indirect causal relations across various settings, and experimental results on real data suggest that the proposed model and method greatly extend the applicability of causal discovery based on functional causal models in nonlinear cases." @default.
- W2945254726 created "2019-05-29" @default.
- W2945254726 creator A5007993394 @default.
- W2945254726 creator A5016038041 @default.
- W2945254726 creator A5016673919 @default.
- W2945254726 creator A5049341927 @default.
- W2945254726 creator A5076948208 @default.
- W2945254726 date "2019-05-22" @default.
- W2945254726 modified "2023-10-18" @default.
- W2945254726 title "Causal Discovery with Cascade Nonlinear Additive Noise Models" @default.
- W2945254726 cites W1524326598 @default.
- W2945254726 cites W1833557697 @default.
- W2945254726 cites W18673558 @default.
- W2945254726 cites W1959608418 @default.
- W2945254726 cites W2112552549 @default.
- W2945254726 cites W2146531590 @default.
- W2945254726 cites W2165582599 @default.
- W2945254726 cites W2186461911 @default.
- W2945254726 cites W2297288734 @default.
- W2945254726 cites W2618817116 @default.
- W2945254726 cites W2786664225 @default.
- W2945254726 cites W2803113114 @default.
- W2945254726 cites W2884410131 @default.
- W2945254726 cites W3103539622 @default.
- W2945254726 cites W3111248356 @default.
- W2945254726 doi "https://doi.org/10.48550/arxiv.1905.09442" @default.
- W2945254726 hasPublicationYear "2019" @default.
- W2945254726 type Work @default.
- W2945254726 sameAs 2945254726 @default.
- W2945254726 citedByCount "1" @default.
- W2945254726 countsByYear W29452547262020 @default.
- W2945254726 crossrefType "posted-content" @default.
- W2945254726 hasAuthorship W2945254726A5007993394 @default.
- W2945254726 hasAuthorship W2945254726A5016038041 @default.
- W2945254726 hasAuthorship W2945254726A5016673919 @default.
- W2945254726 hasAuthorship W2945254726A5049341927 @default.
- W2945254726 hasAuthorship W2945254726A5076948208 @default.
- W2945254726 hasBestOaLocation W29452547261 @default.
- W2945254726 hasConcept C105795698 @default.
- W2945254726 hasConcept C115961682 @default.
- W2945254726 hasConcept C11671645 @default.
- W2945254726 hasConcept C121332964 @default.
- W2945254726 hasConcept C154945302 @default.
- W2945254726 hasConcept C158622935 @default.
- W2945254726 hasConcept C163504300 @default.
- W2945254726 hasConcept C185592680 @default.
- W2945254726 hasConcept C33923547 @default.
- W2945254726 hasConcept C34146451 @default.
- W2945254726 hasConcept C41008148 @default.
- W2945254726 hasConcept C43617362 @default.
- W2945254726 hasConcept C62520636 @default.
- W2945254726 hasConcept C99498987 @default.
- W2945254726 hasConceptScore W2945254726C105795698 @default.
- W2945254726 hasConceptScore W2945254726C115961682 @default.
- W2945254726 hasConceptScore W2945254726C11671645 @default.
- W2945254726 hasConceptScore W2945254726C121332964 @default.
- W2945254726 hasConceptScore W2945254726C154945302 @default.
- W2945254726 hasConceptScore W2945254726C158622935 @default.
- W2945254726 hasConceptScore W2945254726C163504300 @default.
- W2945254726 hasConceptScore W2945254726C185592680 @default.
- W2945254726 hasConceptScore W2945254726C33923547 @default.
- W2945254726 hasConceptScore W2945254726C34146451 @default.
- W2945254726 hasConceptScore W2945254726C41008148 @default.
- W2945254726 hasConceptScore W2945254726C43617362 @default.
- W2945254726 hasConceptScore W2945254726C62520636 @default.
- W2945254726 hasConceptScore W2945254726C99498987 @default.
- W2945254726 hasLocation W29452547261 @default.
- W2945254726 hasOpenAccess W2945254726 @default.
- W2945254726 hasPrimaryLocation W29452547261 @default.
- W2945254726 hasRelatedWork W1545706798 @default.
- W2945254726 hasRelatedWork W1592082209 @default.
- W2945254726 hasRelatedWork W168088975 @default.
- W2945254726 hasRelatedWork W1989811341 @default.
- W2945254726 hasRelatedWork W2088270034 @default.
- W2945254726 hasRelatedWork W2120020149 @default.
- W2945254726 hasRelatedWork W2473183533 @default.
- W2945254726 hasRelatedWork W2565133822 @default.
- W2945254726 hasRelatedWork W3041445400 @default.
- W2945254726 hasRelatedWork W3080648591 @default.
- W2945254726 isParatext "false" @default.
- W2945254726 isRetracted "false" @default.
- W2945254726 magId "2945254726" @default.
- W2945254726 workType "article" @default.