Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945259314> ?p ?o ?g. }
- W2945259314 endingPage "111179" @default.
- W2945259314 startingPage "111179" @default.
- W2945259314 abstract "Satellites enable widespread, regional or global surveillance of volcanoes and can provide the first indication of volcanic unrest or eruption. Here we consider Interferometric Synthetic Aperture Radar (InSAR), which can be employed to detect surface deformation with a strong statistical link to eruption. Recent developments in technology as well as improved computational power have resulted in unprecedented quantities of monitoring data, which can no longer be inspected manually. The ability of machine learning to automatically identify signals of interest in these large InSAR datasets has already been demonstrated, but data-driven techniques, such as convolutional neutral networks (CNN) require balanced training datasets of positive and negative signals to effectively differentiate between real deformation and noise. As only a small proportion of volcanoes are deforming and atmospheric noise is ubiquitous, the use of machine learning for detecting volcanic unrest is more challenging than many other applications. In this paper, we address this problem using synthetic interferograms to train the AlexNet CNN. The synthetic interferograms are composed of 3 parts: 1) deformation patterns based on a Monte Carlo selection of parameters for analytic forward models, 2) stratified atmospheric effects derived from weather models and 3) turbulent atmospheric effects based on statistical simulations of correlated noise. The AlexNet architecture trained with synthetic data outperforms that trained using real interferograms alone, based on classification accuracy and positive predictive value (PPV). However, the models used to generate the synthetic signals are a simplification of the natural processes, so we retrain the CNN with a combined dataset consisting of synthetic models and selected real examples, achieving a final PPV of 82%. Although applying atmospheric corrections to the entire dataset is computationally expensive, it is relatively simple to apply them to the small subset of positive results. This further improves the detection performance without a significant increase in computational burden (PPV of 100%). Thus, we demonstrate that training with synthetic examples can improve the ability of CNNs to detect volcano deformation in satellite images, and propose an efficient workflow for the development of automated systems." @default.
- W2945259314 created "2019-05-29" @default.
- W2945259314 creator A5019912703 @default.
- W2945259314 creator A5021717616 @default.
- W2945259314 creator A5048009053 @default.
- W2945259314 creator A5083240181 @default.
- W2945259314 date "2019-09-01" @default.
- W2945259314 modified "2023-10-17" @default.
- W2945259314 title "A deep learning approach to detecting volcano deformation from satellite imagery using synthetic datasets" @default.
- W2945259314 cites W1579339719 @default.
- W2945259314 cites W1631937297 @default.
- W2945259314 cites W1818230177 @default.
- W2945259314 cites W1970013651 @default.
- W2945259314 cites W2056453128 @default.
- W2945259314 cites W2059842464 @default.
- W2945259314 cites W2097643261 @default.
- W2945259314 cites W2104837959 @default.
- W2945259314 cites W2106238002 @default.
- W2945259314 cites W2118978333 @default.
- W2945259314 cites W2119030762 @default.
- W2945259314 cites W2124799255 @default.
- W2945259314 cites W2128513227 @default.
- W2945259314 cites W2131626033 @default.
- W2945259314 cites W2141341915 @default.
- W2945259314 cites W2144819091 @default.
- W2945259314 cites W2145023731 @default.
- W2945259314 cites W2148143831 @default.
- W2945259314 cites W2162402371 @default.
- W2945259314 cites W2163622378 @default.
- W2945259314 cites W2168893862 @default.
- W2945259314 cites W2508457857 @default.
- W2945259314 cites W2558378816 @default.
- W2945259314 cites W2581298850 @default.
- W2945259314 cites W2766314745 @default.
- W2945259314 cites W2892096864 @default.
- W2945259314 cites W2897280789 @default.
- W2945259314 doi "https://doi.org/10.1016/j.rse.2019.04.032" @default.
- W2945259314 hasPublicationYear "2019" @default.
- W2945259314 type Work @default.
- W2945259314 sameAs 2945259314 @default.
- W2945259314 citedByCount "82" @default.
- W2945259314 countsByYear W29452593142019 @default.
- W2945259314 countsByYear W29452593142020 @default.
- W2945259314 countsByYear W29452593142021 @default.
- W2945259314 countsByYear W29452593142022 @default.
- W2945259314 countsByYear W29452593142023 @default.
- W2945259314 crossrefType "journal-article" @default.
- W2945259314 hasAuthorship W2945259314A5019912703 @default.
- W2945259314 hasAuthorship W2945259314A5021717616 @default.
- W2945259314 hasAuthorship W2945259314A5048009053 @default.
- W2945259314 hasAuthorship W2945259314A5083240181 @default.
- W2945259314 hasBestOaLocation W29452593142 @default.
- W2945259314 hasConcept C108583219 @default.
- W2945259314 hasConcept C115961682 @default.
- W2945259314 hasConcept C119857082 @default.
- W2945259314 hasConcept C120806208 @default.
- W2945259314 hasConcept C127313418 @default.
- W2945259314 hasConcept C154945302 @default.
- W2945259314 hasConcept C160920958 @default.
- W2945259314 hasConcept C165205528 @default.
- W2945259314 hasConcept C22286887 @default.
- W2945259314 hasConcept C30354325 @default.
- W2945259314 hasConcept C41008148 @default.
- W2945259314 hasConcept C555944384 @default.
- W2945259314 hasConcept C62649853 @default.
- W2945259314 hasConcept C76155785 @default.
- W2945259314 hasConcept C81363708 @default.
- W2945259314 hasConcept C87360688 @default.
- W2945259314 hasConcept C99498987 @default.
- W2945259314 hasConceptScore W2945259314C108583219 @default.
- W2945259314 hasConceptScore W2945259314C115961682 @default.
- W2945259314 hasConceptScore W2945259314C119857082 @default.
- W2945259314 hasConceptScore W2945259314C120806208 @default.
- W2945259314 hasConceptScore W2945259314C127313418 @default.
- W2945259314 hasConceptScore W2945259314C154945302 @default.
- W2945259314 hasConceptScore W2945259314C160920958 @default.
- W2945259314 hasConceptScore W2945259314C165205528 @default.
- W2945259314 hasConceptScore W2945259314C22286887 @default.
- W2945259314 hasConceptScore W2945259314C30354325 @default.
- W2945259314 hasConceptScore W2945259314C41008148 @default.
- W2945259314 hasConceptScore W2945259314C555944384 @default.
- W2945259314 hasConceptScore W2945259314C62649853 @default.
- W2945259314 hasConceptScore W2945259314C76155785 @default.
- W2945259314 hasConceptScore W2945259314C81363708 @default.
- W2945259314 hasConceptScore W2945259314C87360688 @default.
- W2945259314 hasConceptScore W2945259314C99498987 @default.
- W2945259314 hasFunder F4320334627 @default.
- W2945259314 hasFunder F4320334631 @default.
- W2945259314 hasLocation W29452593141 @default.
- W2945259314 hasLocation W29452593142 @default.
- W2945259314 hasLocation W29452593143 @default.
- W2945259314 hasOpenAccess W2945259314 @default.
- W2945259314 hasPrimaryLocation W29452593141 @default.
- W2945259314 hasRelatedWork W2106714295 @default.
- W2945259314 hasRelatedWork W2144351264 @default.
- W2945259314 hasRelatedWork W2337926734 @default.
- W2945259314 hasRelatedWork W2617264198 @default.
- W2945259314 hasRelatedWork W2982947611 @default.