Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945259612> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2945259612 abstract "Devanagari ancient document recognition process is drawing a lot of consideration from researchers nowadays. These ancient documents contain a wealth of knowledge. However, these documents are not available to all because of their fragile condition. A Devanagari ancient manuscript recognition system is designed for digital archiving. This system includes image binarization, character segmentation and recognition phases. It incorporates automatic recognition of scanned and segmented characters. Segmented characters may include basic characters (vowels and consonants), modifiers (matras) and various compound characters (characters formed by joining more than one basic characters). In this paper, handwritten Devanagari ancient manuscripts recognition system has been presented using statistical features extraction techniques. In feature extraction phase, intersection points, open endpoints, centroid, horizontal peak extent and vertical peak extent features are extracted. For classification, Convolutional Neural Network, Neural Network, Multilayer Perceptron, RBF-SVM and random forest techniques are considered in this work. Various feature extraction and classification techniques are considered and compared to the recognition of basic characters segmented from Devanagari ancient manuscripts. A data set, of 6152 pre-segmented samples of Devanagari ancient documents, is considered for experimental work. Authors have achieved 88.95% recognition accuracy using a combination of all features and a combination of all classifiers considered in this work by a simple majority voting scheme." @default.
- W2945259612 created "2019-05-29" @default.
- W2945259612 creator A5012549488 @default.
- W2945259612 creator A5020484157 @default.
- W2945259612 creator A5055589318 @default.
- W2945259612 date "2019-05-13" @default.
- W2945259612 modified "2023-10-16" @default.
- W2945259612 title "Devanagari ancient documents recognition using statistical feature extraction techniques" @default.
- W2945259612 cites W2001445689 @default.
- W2945259612 cites W2050854402 @default.
- W2945259612 cites W2054124380 @default.
- W2945259612 cites W2059914354 @default.
- W2945259612 cites W2066338008 @default.
- W2945259612 cites W2074454452 @default.
- W2945259612 cites W2104543051 @default.
- W2945259612 cites W2112796928 @default.
- W2945259612 cites W2112852975 @default.
- W2945259612 cites W2133503046 @default.
- W2945259612 cites W2149446864 @default.
- W2945259612 cites W2309746332 @default.
- W2945259612 cites W2467325985 @default.
- W2945259612 cites W2587529188 @default.
- W2945259612 cites W2781914340 @default.
- W2945259612 cites W2952912658 @default.
- W2945259612 cites W2019846227 @default.
- W2945259612 doi "https://doi.org/10.1007/s12046-019-1126-9" @default.
- W2945259612 hasPublicationYear "2019" @default.
- W2945259612 type Work @default.
- W2945259612 sameAs 2945259612 @default.
- W2945259612 citedByCount "21" @default.
- W2945259612 countsByYear W29452596122019 @default.
- W2945259612 countsByYear W29452596122020 @default.
- W2945259612 countsByYear W29452596122021 @default.
- W2945259612 countsByYear W29452596122022 @default.
- W2945259612 countsByYear W29452596122023 @default.
- W2945259612 crossrefType "journal-article" @default.
- W2945259612 hasAuthorship W2945259612A5012549488 @default.
- W2945259612 hasAuthorship W2945259612A5020484157 @default.
- W2945259612 hasAuthorship W2945259612A5055589318 @default.
- W2945259612 hasBestOaLocation W29452596122 @default.
- W2945259612 hasConcept C115961682 @default.
- W2945259612 hasConcept C138885662 @default.
- W2945259612 hasConcept C153180895 @default.
- W2945259612 hasConcept C154945302 @default.
- W2945259612 hasConcept C2776401178 @default.
- W2945259612 hasConcept C2780144916 @default.
- W2945259612 hasConcept C2987247673 @default.
- W2945259612 hasConcept C41008148 @default.
- W2945259612 hasConcept C41895202 @default.
- W2945259612 hasConcept C50644808 @default.
- W2945259612 hasConcept C52622490 @default.
- W2945259612 hasConcept C81363708 @default.
- W2945259612 hasConcept C89600930 @default.
- W2945259612 hasConceptScore W2945259612C115961682 @default.
- W2945259612 hasConceptScore W2945259612C138885662 @default.
- W2945259612 hasConceptScore W2945259612C153180895 @default.
- W2945259612 hasConceptScore W2945259612C154945302 @default.
- W2945259612 hasConceptScore W2945259612C2776401178 @default.
- W2945259612 hasConceptScore W2945259612C2780144916 @default.
- W2945259612 hasConceptScore W2945259612C2987247673 @default.
- W2945259612 hasConceptScore W2945259612C41008148 @default.
- W2945259612 hasConceptScore W2945259612C41895202 @default.
- W2945259612 hasConceptScore W2945259612C50644808 @default.
- W2945259612 hasConceptScore W2945259612C52622490 @default.
- W2945259612 hasConceptScore W2945259612C81363708 @default.
- W2945259612 hasConceptScore W2945259612C89600930 @default.
- W2945259612 hasIssue "6" @default.
- W2945259612 hasLocation W29452596121 @default.
- W2945259612 hasLocation W29452596122 @default.
- W2945259612 hasOpenAccess W2945259612 @default.
- W2945259612 hasPrimaryLocation W29452596121 @default.
- W2945259612 hasRelatedWork W2037894656 @default.
- W2945259612 hasRelatedWork W2167945225 @default.
- W2945259612 hasRelatedWork W2244980784 @default.
- W2945259612 hasRelatedWork W2316254460 @default.
- W2945259612 hasRelatedWork W2426618597 @default.
- W2945259612 hasRelatedWork W2546501331 @default.
- W2945259612 hasRelatedWork W2811390910 @default.
- W2945259612 hasRelatedWork W2819040622 @default.
- W2945259612 hasRelatedWork W4200043248 @default.
- W2945259612 hasRelatedWork W4360905860 @default.
- W2945259612 hasVolume "44" @default.
- W2945259612 isParatext "false" @default.
- W2945259612 isRetracted "false" @default.
- W2945259612 magId "2945259612" @default.
- W2945259612 workType "article" @default.