Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945269074> ?p ?o ?g. }
- W2945269074 startingPage "463497" @default.
- W2945269074 abstract "ABSTRACT Objectives It remains difficult to characterize pain in knee joints with risk of osteoarthritis solely by radiographic findings. We sought to understand if advanced machine learning methods such as deep neural networks can be used to predict and identify the structural features that are associated with knee pain. Methods We constructed a convolutional Siamese network to associate MRI scans obtained on subjects from the Osteoarthritis Initiative (OAI) with frequent unilateral knee pain (n=1,529) comparing their knee with frequent pain to the contralateral knee without pain. The Siamese network architecture enabled pairwise learning of information from two-dimensional (2D) sagittal intermediate-weighted turbo spin echo slices obtained from similar locations on both knees. Class activation mapping (CAM) was utilized to create saliency maps, which highlighted the regions that were most associated with knee pain. The MRI scans and the CAMs of each subject were reviewed by a radiologist to identify the presence of abnormalities within the model-predicted regions of high association. Results Using 10-fold cross validation, our model achieved an area under curve (AUC) value of 0.808. When individuals whose knee WOMAC pain scores were not discordant were excluded, model performance increased to 0.853. The radiologist review revealed that about 86% of the cases that were predicted correctly had effusion-synovitis within the regions that were most associated with pain. Conclusions This study demonstrates a proof of principle that deep learning can be applied to assess knee pain from MRI scans." @default.
- W2945269074 created "2019-05-29" @default.
- W2945269074 creator A5001502538 @default.
- W2945269074 creator A5016288715 @default.
- W2945269074 creator A5023227957 @default.
- W2945269074 creator A5027278626 @default.
- W2945269074 creator A5049108652 @default.
- W2945269074 creator A5069018938 @default.
- W2945269074 date "2019-05-22" @default.
- W2945269074 modified "2023-09-27" @default.
- W2945269074 title "Assessment of knee pain from MRI scans using a convolutional Siamese network" @default.
- W2945269074 cites W1686810756 @default.
- W2945269074 cites W1965665343 @default.
- W2945269074 cites W1970850418 @default.
- W2945269074 cites W1972765414 @default.
- W2945269074 cites W1973201749 @default.
- W2945269074 cites W1988493379 @default.
- W2945269074 cites W1997140718 @default.
- W2945269074 cites W1997637714 @default.
- W2945269074 cites W2032267692 @default.
- W2945269074 cites W2034714544 @default.
- W2945269074 cites W2039258159 @default.
- W2945269074 cites W2061524980 @default.
- W2945269074 cites W2074963460 @default.
- W2945269074 cites W2085513955 @default.
- W2945269074 cites W2092980618 @default.
- W2945269074 cites W2097250275 @default.
- W2945269074 cites W2102099319 @default.
- W2945269074 cites W2132697886 @default.
- W2945269074 cites W2135586439 @default.
- W2945269074 cites W2140513563 @default.
- W2945269074 cites W2144200965 @default.
- W2945269074 cites W2157364932 @default.
- W2945269074 cites W2163522693 @default.
- W2945269074 cites W2167933345 @default.
- W2945269074 cites W2295107390 @default.
- W2945269074 cites W2346062110 @default.
- W2945269074 cites W2412901966 @default.
- W2945269074 cites W2567599812 @default.
- W2945269074 cites W2592929672 @default.
- W2945269074 cites W2610401426 @default.
- W2945269074 cites W2777186991 @default.
- W2945269074 cites W2783839600 @default.
- W2945269074 cites W2794523648 @default.
- W2945269074 cites W2794990008 @default.
- W2945269074 cites W2884883255 @default.
- W2945269074 cites W2889131448 @default.
- W2945269074 cites W2919115771 @default.
- W2945269074 cites W2963202012 @default.
- W2945269074 hasPublicationYear "2019" @default.
- W2945269074 type Work @default.
- W2945269074 sameAs 2945269074 @default.
- W2945269074 citedByCount "0" @default.
- W2945269074 crossrefType "posted-content" @default.
- W2945269074 hasAuthorship W2945269074A5001502538 @default.
- W2945269074 hasAuthorship W2945269074A5016288715 @default.
- W2945269074 hasAuthorship W2945269074A5023227957 @default.
- W2945269074 hasAuthorship W2945269074A5027278626 @default.
- W2945269074 hasAuthorship W2945269074A5049108652 @default.
- W2945269074 hasAuthorship W2945269074A5069018938 @default.
- W2945269074 hasConcept C108583219 @default.
- W2945269074 hasConcept C126322002 @default.
- W2945269074 hasConcept C126838900 @default.
- W2945269074 hasConcept C141071460 @default.
- W2945269074 hasConcept C142724271 @default.
- W2945269074 hasConcept C154945302 @default.
- W2945269074 hasConcept C178910020 @default.
- W2945269074 hasConcept C1862650 @default.
- W2945269074 hasConcept C204787440 @default.
- W2945269074 hasConcept C2776164576 @default.
- W2945269074 hasConcept C2777077863 @default.
- W2945269074 hasConcept C2779244835 @default.
- W2945269074 hasConcept C2779279471 @default.
- W2945269074 hasConcept C2779286237 @default.
- W2945269074 hasConcept C2908736133 @default.
- W2945269074 hasConcept C41008148 @default.
- W2945269074 hasConcept C71924100 @default.
- W2945269074 hasConcept C81363708 @default.
- W2945269074 hasConcept C99508421 @default.
- W2945269074 hasConceptScore W2945269074C108583219 @default.
- W2945269074 hasConceptScore W2945269074C126322002 @default.
- W2945269074 hasConceptScore W2945269074C126838900 @default.
- W2945269074 hasConceptScore W2945269074C141071460 @default.
- W2945269074 hasConceptScore W2945269074C142724271 @default.
- W2945269074 hasConceptScore W2945269074C154945302 @default.
- W2945269074 hasConceptScore W2945269074C178910020 @default.
- W2945269074 hasConceptScore W2945269074C1862650 @default.
- W2945269074 hasConceptScore W2945269074C204787440 @default.
- W2945269074 hasConceptScore W2945269074C2776164576 @default.
- W2945269074 hasConceptScore W2945269074C2777077863 @default.
- W2945269074 hasConceptScore W2945269074C2779244835 @default.
- W2945269074 hasConceptScore W2945269074C2779279471 @default.
- W2945269074 hasConceptScore W2945269074C2779286237 @default.
- W2945269074 hasConceptScore W2945269074C2908736133 @default.
- W2945269074 hasConceptScore W2945269074C41008148 @default.
- W2945269074 hasConceptScore W2945269074C71924100 @default.
- W2945269074 hasConceptScore W2945269074C81363708 @default.
- W2945269074 hasConceptScore W2945269074C99508421 @default.
- W2945269074 hasOpenAccess W2945269074 @default.