Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945276054> ?p ?o ?g. }
- W2945276054 endingPage "1223" @default.
- W2945276054 startingPage "1223" @default.
- W2945276054 abstract "Spatial regularized sparse unmixing has been proved as an effective spectral unmixing technique, combining spatial information and standard spectral signatures known in advance into the traditional spectral unmixing model in the form of sparse regression. In a spatial regularized sparse unmixing model, spatial consideration acts as an important role and develops from local neighborhood pixels to global structures. However, incorporating spatial relationships will increase the computational complexity, and it is inevitable that some negative influences obtained by inaccurate estimated abundances’ spatial correlations will reduce the accuracy of the algorithms. To obtain a more reliable and efficient spatial regularized sparse unmixing results, a joint local block grouping with noise-adjusted principal component analysis for hyperspectral remote-sensing imagery sparse unmixing is proposed in this paper. In this work, local block grouping is first utilized to gather and classify abundant spatial information in local blocks, and noise-adjusted principal component analysis is used to compress these series of classified local blocks and select the most significant ones. Then the representative spatial correlations are drawn and replace the traditional spatial regularization in the spatial regularized sparse unmixing method. Compared with total variation-based and non-local means-based sparse unmixing algorithms, the proposed approach can yield comparable experimental results with three simulated hyperspectral data cubes and two real hyperspectral remote-sensing images." @default.
- W2945276054 created "2019-05-29" @default.
- W2945276054 creator A5009116003 @default.
- W2945276054 creator A5053931437 @default.
- W2945276054 creator A5075903928 @default.
- W2945276054 date "2019-05-23" @default.
- W2945276054 modified "2023-09-26" @default.
- W2945276054 title "Joint Local Block Grouping with Noise-Adjusted Principal Component Analysis for Hyperspectral Remote-Sensing Imagery Sparse Unmixing" @default.
- W2945276054 cites W1524571335 @default.
- W2945276054 cites W1964570608 @default.
- W2945276054 cites W1981939910 @default.
- W2945276054 cites W1984553293 @default.
- W2945276054 cites W1996213136 @default.
- W2945276054 cites W2027878671 @default.
- W2945276054 cites W2038308334 @default.
- W2945276054 cites W2039827010 @default.
- W2945276054 cites W2049418899 @default.
- W2945276054 cites W2058532290 @default.
- W2945276054 cites W2060147006 @default.
- W2945276054 cites W2065548527 @default.
- W2945276054 cites W2066628421 @default.
- W2945276054 cites W2073786624 @default.
- W2945276054 cites W2085692415 @default.
- W2945276054 cites W2087263574 @default.
- W2945276054 cites W2089514923 @default.
- W2945276054 cites W2091494211 @default.
- W2945276054 cites W2092363223 @default.
- W2945276054 cites W2093985867 @default.
- W2945276054 cites W2103559027 @default.
- W2945276054 cites W2109115094 @default.
- W2945276054 cites W2109357213 @default.
- W2945276054 cites W2125298866 @default.
- W2945276054 cites W2126527280 @default.
- W2945276054 cites W2135161976 @default.
- W2945276054 cites W2136396015 @default.
- W2945276054 cites W2140501674 @default.
- W2945276054 cites W2147353113 @default.
- W2945276054 cites W2149217960 @default.
- W2945276054 cites W2163886442 @default.
- W2945276054 cites W2302006234 @default.
- W2945276054 cites W2324828044 @default.
- W2945276054 cites W2346039076 @default.
- W2945276054 cites W2415341181 @default.
- W2945276054 cites W2418263100 @default.
- W2945276054 cites W2464427950 @default.
- W2945276054 cites W2562867554 @default.
- W2945276054 cites W2587548727 @default.
- W2945276054 cites W2620429297 @default.
- W2945276054 cites W2767248736 @default.
- W2945276054 cites W2767898978 @default.
- W2945276054 cites W2770508708 @default.
- W2945276054 cites W2772226559 @default.
- W2945276054 cites W2782517596 @default.
- W2945276054 cites W2791545889 @default.
- W2945276054 cites W2792167075 @default.
- W2945276054 cites W2794145027 @default.
- W2945276054 cites W2799769786 @default.
- W2945276054 cites W2802602836 @default.
- W2945276054 cites W2803704927 @default.
- W2945276054 cites W2804275394 @default.
- W2945276054 cites W2807946621 @default.
- W2945276054 cites W2809328251 @default.
- W2945276054 cites W2810504629 @default.
- W2945276054 cites W2887552554 @default.
- W2945276054 cites W2894332515 @default.
- W2945276054 cites W2896057526 @default.
- W2945276054 cites W2896961953 @default.
- W2945276054 cites W2897962879 @default.
- W2945276054 cites W3098164245 @default.
- W2945276054 cites W3099751232 @default.
- W2945276054 cites W3099831940 @default.
- W2945276054 cites W3101012758 @default.
- W2945276054 cites W3106090851 @default.
- W2945276054 cites W561305352 @default.
- W2945276054 doi "https://doi.org/10.3390/rs11101223" @default.
- W2945276054 hasPublicationYear "2019" @default.
- W2945276054 type Work @default.
- W2945276054 sameAs 2945276054 @default.
- W2945276054 citedByCount "11" @default.
- W2945276054 countsByYear W29452760542019 @default.
- W2945276054 countsByYear W29452760542020 @default.
- W2945276054 countsByYear W29452760542021 @default.
- W2945276054 countsByYear W29452760542023 @default.
- W2945276054 crossrefType "journal-article" @default.
- W2945276054 hasAuthorship W2945276054A5009116003 @default.
- W2945276054 hasAuthorship W2945276054A5053931437 @default.
- W2945276054 hasAuthorship W2945276054A5075903928 @default.
- W2945276054 hasBestOaLocation W29452760541 @default.
- W2945276054 hasConcept C115961682 @default.
- W2945276054 hasConcept C124066611 @default.
- W2945276054 hasConcept C150060386 @default.
- W2945276054 hasConcept C153180895 @default.
- W2945276054 hasConcept C154945302 @default.
- W2945276054 hasConcept C159078339 @default.
- W2945276054 hasConcept C159620131 @default.
- W2945276054 hasConcept C160633673 @default.
- W2945276054 hasConcept C205649164 @default.
- W2945276054 hasConcept C2524010 @default.