Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945291386> ?p ?o ?g. }
- W2945291386 endingPage "122" @default.
- W2945291386 startingPage "110" @default.
- W2945291386 abstract "High spatial resolution satellite sensors provide opportunities to observe spatial variations of biogeochemical properties of small- and medium-sized inland water bodies. However, high spatial resolution sensors are usually equipped with wider spectral bandwidth (>50 nm) that diminishes the features of the spectrum. Therefore, the effects of the border bandwidth issue need to be evaluated prior to application in aquatic environments. Based on the in situ optical data [remote sensing reflectance (Rrs) and absorption coefficients] and the radiative simulations of hyperspectral remote sensing reflectance and using band specifics of common sensors (e.g., OLCI, VIIRS, MSI, OLI, ETM+ and WFV) as examples, the effects of bandwidth on optical properties of inland waters were analyzed. The results showed the followings. (1) The difference between values at center-wavelength and band-averaged values increased with increasing bandwidth for Rrs and the absorption coefficients. The difference was wavelength-dependent. The difference of Rrs at the visible band was within 0.25% but greater than 0.5% for the spectral bands near 710 nm and 665 nm. (2) The accuracy of the total absorption coefficient derived from QAA-750E, spectral match technique (SMT) and deep neural network (DNN) decreased with increasing bandwidth. The QAA-750E was more sensitive to bandwidth than SMT and DNN. Otherwise, the empirical algorithms for estimating chlorophyll-a (Chla) concentrations were significantly affected by bandwidth. The performance of algorithms for estimating cyanobacterial phycocyanin (PC) and suspended particulate matter (SPM) concentrations changed slightly with a wider bandwidth. Finally, the maximum bandwidth requirement for optical remote sensing in inland waters was proposed. For bandwidth options, it should be within 20 nm for 700–710 nm, ∼30 nm maximum for ∼560 nm and ∼665 nm, 60 nm for ∼620 nm, and ∼80 nm for ∼443 nm and ∼490 nm, respectively. The difference between the Rrs of narrow bands (10–20 nm) and the Rrs of the bands with the recommended bandwidth was within 0.25%. The corresponding bandwidth from MSI and OLI sensors meet this criterion for Chla and SPM. However, the lack of spectral coverage near 700–710 nm may present a challenge to retrieve Chla concentration from OLI images. This study provided helpful theoretical and practical references for the retrieval of inland water parameters by high spatial resolution satellite sensors and its prospective development." @default.
- W2945291386 created "2019-05-29" @default.
- W2945291386 creator A5003848639 @default.
- W2945291386 creator A5004134714 @default.
- W2945291386 creator A5073498273 @default.
- W2945291386 creator A5084074011 @default.
- W2945291386 date "2019-07-01" @default.
- W2945291386 modified "2023-10-17" @default.
- W2945291386 title "Effects of broad bandwidth on the remote sensing of inland waters: Implications for high spatial resolution satellite data applications" @default.
- W2945291386 cites W1817841038 @default.
- W2945291386 cites W1966197059 @default.
- W2945291386 cites W1967906870 @default.
- W2945291386 cites W1977923175 @default.
- W2945291386 cites W1994917811 @default.
- W2945291386 cites W2024859456 @default.
- W2945291386 cites W2032813842 @default.
- W2945291386 cites W2040621183 @default.
- W2945291386 cites W2042040410 @default.
- W2945291386 cites W2042737933 @default.
- W2945291386 cites W2048956808 @default.
- W2945291386 cites W2063012028 @default.
- W2945291386 cites W2064393559 @default.
- W2945291386 cites W2067166945 @default.
- W2945291386 cites W2067653716 @default.
- W2945291386 cites W2076063813 @default.
- W2945291386 cites W2081405294 @default.
- W2945291386 cites W2082714424 @default.
- W2945291386 cites W2092031707 @default.
- W2945291386 cites W2101575373 @default.
- W2945291386 cites W2102276060 @default.
- W2945291386 cites W2110080986 @default.
- W2945291386 cites W2114164280 @default.
- W2945291386 cites W2118478759 @default.
- W2945291386 cites W2128904410 @default.
- W2945291386 cites W2131713496 @default.
- W2945291386 cites W2136758825 @default.
- W2945291386 cites W2137734568 @default.
- W2945291386 cites W2144228692 @default.
- W2945291386 cites W2149463205 @default.
- W2945291386 cites W2155497755 @default.
- W2945291386 cites W2155782014 @default.
- W2945291386 cites W2161265506 @default.
- W2945291386 cites W2161495293 @default.
- W2945291386 cites W2218047931 @default.
- W2945291386 cites W2281658227 @default.
- W2945291386 cites W2288727789 @default.
- W2945291386 cites W2301042755 @default.
- W2945291386 cites W2336571173 @default.
- W2945291386 cites W2560167313 @default.
- W2945291386 cites W2565972172 @default.
- W2945291386 cites W2579492213 @default.
- W2945291386 cites W2584981701 @default.
- W2945291386 cites W2588754867 @default.
- W2945291386 cites W2593522913 @default.
- W2945291386 cites W2624257914 @default.
- W2945291386 cites W2738308406 @default.
- W2945291386 cites W2739894346 @default.
- W2945291386 cites W2753335802 @default.
- W2945291386 cites W2764084117 @default.
- W2945291386 cites W2766218145 @default.
- W2945291386 cites W2769711140 @default.
- W2945291386 cites W2771933030 @default.
- W2945291386 cites W2789465652 @default.
- W2945291386 cites W2808492381 @default.
- W2945291386 cites W2895359416 @default.
- W2945291386 cites W2913323966 @default.
- W2945291386 cites W2928164210 @default.
- W2945291386 cites W2940671783 @default.
- W2945291386 cites W615506782 @default.
- W2945291386 doi "https://doi.org/10.1016/j.isprsjprs.2019.05.001" @default.
- W2945291386 hasPublicationYear "2019" @default.
- W2945291386 type Work @default.
- W2945291386 sameAs 2945291386 @default.
- W2945291386 citedByCount "39" @default.
- W2945291386 countsByYear W29452913862019 @default.
- W2945291386 countsByYear W29452913862020 @default.
- W2945291386 countsByYear W29452913862021 @default.
- W2945291386 countsByYear W29452913862022 @default.
- W2945291386 countsByYear W29452913862023 @default.
- W2945291386 crossrefType "journal-article" @default.
- W2945291386 hasAuthorship W2945291386A5003848639 @default.
- W2945291386 hasAuthorship W2945291386A5004134714 @default.
- W2945291386 hasAuthorship W2945291386A5073498273 @default.
- W2945291386 hasAuthorship W2945291386A5084074011 @default.
- W2945291386 hasConcept C107872376 @default.
- W2945291386 hasConcept C120665830 @default.
- W2945291386 hasConcept C121332964 @default.
- W2945291386 hasConcept C124967146 @default.
- W2945291386 hasConcept C127313418 @default.
- W2945291386 hasConcept C1276947 @default.
- W2945291386 hasConcept C151730666 @default.
- W2945291386 hasConcept C159078339 @default.
- W2945291386 hasConcept C159774933 @default.
- W2945291386 hasConcept C173163844 @default.
- W2945291386 hasConcept C185592680 @default.
- W2945291386 hasConcept C192562407 @default.
- W2945291386 hasConcept C19269812 @default.
- W2945291386 hasConcept C205372480 @default.