Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945314407> ?p ?o ?g. }
- W2945314407 endingPage "291" @default.
- W2945314407 startingPage "252" @default.
- W2945314407 abstract "Intelligent big data analytics and machine learning systems have been introduced to explain for the early diagnosis of neurological disorders. A number of scholarly researches about intelligent big data analytics in healthcare and machine learning system used in the healthcare system have been mentioned. The authors have explained the definition of big data, big data samples, and big data analytics. But the main goal is helping researchers or specialists in providing opinion about diagnosing or predicting neurological disorders using intelligent big data analytics and machine learning. Therefore, they focused on the healthcare systems using these innovative ways in particular. The information of platform and tools about big data analytics in healthcare is investigated. Numerous academic studies based on the detection of neurological disorders using both machine learning methods and big data analytics have been reviewed." @default.
- W2945314407 created "2019-05-29" @default.
- W2945314407 creator A5003720643 @default.
- W2945314407 creator A5075802670 @default.
- W2945314407 date "2019-01-01" @default.
- W2945314407 modified "2023-10-17" @default.
- W2945314407 title "Intelligent Big Data Analytics in Health" @default.
- W2945314407 cites W1501818423 @default.
- W2945314407 cites W1524850305 @default.
- W2945314407 cites W1721214611 @default.
- W2945314407 cites W1901616594 @default.
- W2945314407 cites W1966380235 @default.
- W2945314407 cites W1970902974 @default.
- W2945314407 cites W1979268377 @default.
- W2945314407 cites W1989099984 @default.
- W2945314407 cites W1990517717 @default.
- W2945314407 cites W2003263488 @default.
- W2945314407 cites W2009849234 @default.
- W2945314407 cites W2018821139 @default.
- W2945314407 cites W2019810199 @default.
- W2945314407 cites W2036356299 @default.
- W2945314407 cites W2040263621 @default.
- W2945314407 cites W2048438306 @default.
- W2945314407 cites W2057536936 @default.
- W2945314407 cites W2072750586 @default.
- W2945314407 cites W2079810998 @default.
- W2945314407 cites W2085724875 @default.
- W2945314407 cites W2094914614 @default.
- W2945314407 cites W2103279572 @default.
- W2945314407 cites W2109125224 @default.
- W2945314407 cites W2120751691 @default.
- W2945314407 cites W2121456247 @default.
- W2945314407 cites W2131715540 @default.
- W2945314407 cites W2150291840 @default.
- W2945314407 cites W2171693726 @default.
- W2945314407 cites W2258968934 @default.
- W2945314407 cites W2261525379 @default.
- W2945314407 cites W2285118877 @default.
- W2945314407 cites W2310231101 @default.
- W2945314407 cites W2313240653 @default.
- W2945314407 cites W2406349003 @default.
- W2945314407 cites W2409767563 @default.
- W2945314407 cites W2468387181 @default.
- W2945314407 cites W2474850219 @default.
- W2945314407 cites W2492804124 @default.
- W2945314407 cites W2515710690 @default.
- W2945314407 cites W2524195907 @default.
- W2945314407 cites W2525258806 @default.
- W2945314407 cites W2528668861 @default.
- W2945314407 cites W2545366524 @default.
- W2945314407 cites W2552297943 @default.
- W2945314407 cites W2576683119 @default.
- W2945314407 cites W2579213716 @default.
- W2945314407 cites W2584585015 @default.
- W2945314407 cites W2593207864 @default.
- W2945314407 cites W2606430910 @default.
- W2945314407 cites W2625300467 @default.
- W2945314407 cites W2625392185 @default.
- W2945314407 cites W2733722625 @default.
- W2945314407 cites W2734935247 @default.
- W2945314407 cites W2749353276 @default.
- W2945314407 cites W2752558629 @default.
- W2945314407 cites W2753916199 @default.
- W2945314407 cites W2759511880 @default.
- W2945314407 cites W2760314420 @default.
- W2945314407 cites W2761197040 @default.
- W2945314407 cites W2766459655 @default.
- W2945314407 cites W2766736865 @default.
- W2945314407 cites W2767185818 @default.
- W2945314407 cites W2779764073 @default.
- W2945314407 cites W2783976217 @default.
- W2945314407 cites W2786924777 @default.
- W2945314407 cites W2792498089 @default.
- W2945314407 cites W2793905675 @default.
- W2945314407 cites W2798895927 @default.
- W2945314407 cites W2801220594 @default.
- W2945314407 cites W2811205117 @default.
- W2945314407 cites W2885225936 @default.
- W2945314407 cites W2896195996 @default.
- W2945314407 cites W2898126066 @default.
- W2945314407 cites W2899689011 @default.
- W2945314407 cites W2911964244 @default.
- W2945314407 cites W2919115771 @default.
- W2945314407 cites W2953130175 @default.
- W2945314407 cites W4250042253 @default.
- W2945314407 cites W937729739 @default.
- W2945314407 cites W2777448616 @default.
- W2945314407 doi "https://doi.org/10.4018/978-1-5225-8567-1.ch014" @default.
- W2945314407 hasPublicationYear "2019" @default.
- W2945314407 type Work @default.
- W2945314407 sameAs 2945314407 @default.
- W2945314407 citedByCount "5" @default.
- W2945314407 countsByYear W29453144072019 @default.
- W2945314407 countsByYear W29453144072020 @default.
- W2945314407 countsByYear W29453144072021 @default.
- W2945314407 countsByYear W29453144072022 @default.
- W2945314407 countsByYear W29453144072023 @default.
- W2945314407 crossrefType "book-chapter" @default.