Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945320255> ?p ?o ?g. }
- W2945320255 endingPage "65869" @default.
- W2945320255 startingPage "65852" @default.
- W2945320255 abstract "Future mobile networks have to be densified by employing small cells to handle the upsurge in traffic load. Although the amount of energy each small cell consumes is low, the total energy consumption of a large-scale network may be enormous. To enhance energy efficiency, we have to adapt the number of active base stations to the offered traffic load. Deactivating base stations may cause coverage holes, degrade the quality of service and throughput while redundant base stations waste energy. That is why we have to adapt the network to an effective density. In this paper, we show that achieving an optimal solution for adapting the density of base stations to the demand is NP-hard. We propose a solution that consists of two heuristic algorithms: a base station density adaptation algorithm and a cell-zooming algorithm that determines which base stations must be kept active and adapts transmit power of base stations to enhance throughput, energy, and spectral efficiency. We employ a multi-access edge cloud for taking a snapshot of the network state in nearly real time with a wider perspective and for collecting network state over a large area. We show that the proposed algorithm conserves energy up to 12% while the spectral efficiency and network throughput can be enhanced up to 30% and 26% in comparison with recent works, respectively." @default.
- W2945320255 created "2019-05-29" @default.
- W2945320255 creator A5030797492 @default.
- W2945320255 creator A5059013586 @default.
- W2945320255 date "2019-01-01" @default.
- W2945320255 modified "2023-10-08" @default.
- W2945320255 title "Density-Aware, Energy- and Spectrum-Efficient Small Cell Scheduling" @default.
- W2945320255 cites W1818574736 @default.
- W2945320255 cites W1940404629 @default.
- W2945320255 cites W1972470182 @default.
- W2945320255 cites W1976916279 @default.
- W2945320255 cites W1998092080 @default.
- W2945320255 cites W2001341021 @default.
- W2945320255 cites W2008783708 @default.
- W2945320255 cites W2020966495 @default.
- W2945320255 cites W2047590193 @default.
- W2945320255 cites W2049496443 @default.
- W2945320255 cites W2071613227 @default.
- W2945320255 cites W2074095083 @default.
- W2945320255 cites W2116420503 @default.
- W2945320255 cites W2156842280 @default.
- W2945320255 cites W2171447867 @default.
- W2945320255 cites W2204753431 @default.
- W2945320255 cites W2313389275 @default.
- W2945320255 cites W2344783839 @default.
- W2945320255 cites W2375617955 @default.
- W2945320255 cites W2499267825 @default.
- W2945320255 cites W2501289763 @default.
- W2945320255 cites W2504935104 @default.
- W2945320255 cites W2511924523 @default.
- W2945320255 cites W2518275309 @default.
- W2945320255 cites W2531870794 @default.
- W2945320255 cites W2536380892 @default.
- W2945320255 cites W2597975502 @default.
- W2945320255 cites W2599805219 @default.
- W2945320255 cites W2601095321 @default.
- W2945320255 cites W2608029467 @default.
- W2945320255 cites W2609883894 @default.
- W2945320255 cites W2612796108 @default.
- W2945320255 cites W2615459164 @default.
- W2945320255 cites W2758228140 @default.
- W2945320255 cites W2768224933 @default.
- W2945320255 cites W2800205258 @default.
- W2945320255 cites W2809530341 @default.
- W2945320255 cites W2810500455 @default.
- W2945320255 cites W2853806135 @default.
- W2945320255 cites W2889683549 @default.
- W2945320255 cites W2894946528 @default.
- W2945320255 cites W2896932575 @default.
- W2945320255 cites W2898459288 @default.
- W2945320255 cites W2902838334 @default.
- W2945320255 cites W2907935659 @default.
- W2945320255 cites W2910175468 @default.
- W2945320255 cites W2910646218 @default.
- W2945320255 cites W2962981020 @default.
- W2945320255 cites W2964264260 @default.
- W2945320255 cites W3104194621 @default.
- W2945320255 cites W838780744 @default.
- W2945320255 doi "https://doi.org/10.1109/access.2019.2917722" @default.
- W2945320255 hasPublicationYear "2019" @default.
- W2945320255 type Work @default.
- W2945320255 sameAs 2945320255 @default.
- W2945320255 citedByCount "17" @default.
- W2945320255 countsByYear W29453202552019 @default.
- W2945320255 countsByYear W29453202552020 @default.
- W2945320255 countsByYear W29453202552021 @default.
- W2945320255 countsByYear W29453202552022 @default.
- W2945320255 countsByYear W29453202552023 @default.
- W2945320255 crossrefType "journal-article" @default.
- W2945320255 hasAuthorship W2945320255A5030797492 @default.
- W2945320255 hasAuthorship W2945320255A5059013586 @default.
- W2945320255 hasBestOaLocation W29453202551 @default.
- W2945320255 hasConcept C119599485 @default.
- W2945320255 hasConcept C120314980 @default.
- W2945320255 hasConcept C126255220 @default.
- W2945320255 hasConcept C127162648 @default.
- W2945320255 hasConcept C127413603 @default.
- W2945320255 hasConcept C137246740 @default.
- W2945320255 hasConcept C138959212 @default.
- W2945320255 hasConcept C153646914 @default.
- W2945320255 hasConcept C157764524 @default.
- W2945320255 hasConcept C187691185 @default.
- W2945320255 hasConcept C206729178 @default.
- W2945320255 hasConcept C2524010 @default.
- W2945320255 hasConcept C2742236 @default.
- W2945320255 hasConcept C2780165032 @default.
- W2945320255 hasConcept C31258907 @default.
- W2945320255 hasConcept C33923547 @default.
- W2945320255 hasConcept C41008148 @default.
- W2945320255 hasConcept C555944384 @default.
- W2945320255 hasConcept C68649174 @default.
- W2945320255 hasConcept C76155785 @default.
- W2945320255 hasConcept C79403827 @default.
- W2945320255 hasConceptScore W2945320255C119599485 @default.
- W2945320255 hasConceptScore W2945320255C120314980 @default.
- W2945320255 hasConceptScore W2945320255C126255220 @default.
- W2945320255 hasConceptScore W2945320255C127162648 @default.
- W2945320255 hasConceptScore W2945320255C127413603 @default.