Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945334889> ?p ?o ?g. }
- W2945334889 abstract "Computational image analysis is one means for evaluating digitized histopathology specimens that can increase the reproducibility and reliability with which cancer diagnoses are rendered while simultaneously providing insight as to the underlying mechanisms of disease onset and progression. A major challenge that is confronted when analyzing samples that have been prepared at disparate laboratories and institutions is that the algorithms used to assess the digitized specimens often exhibit heterogeneous staining characteristics because of slight differences in incubation times and the protocols used to prepare the samples. Unfortunately, such variations can render a prediction model learned from one batch of specimens ineffective for characterizing an ensemble originating from another site. In this work, we propose to adopt unsupervised domain adaptation to effectively transfer the discriminative knowledge obtained from any given source domain to the target domain without requiring any additional labeling or annotation of images at the target site. In this paper, our team investigates the use of two approaches for performing the adaptation: (1) color normalization and (2) adversarial training. The adversarial training strategy is implemented through the use of convolutional neural networks to find an invariant feature space and Siamese architecture within the target domain to add a regularization that is appropriate for the entire set of whole-slide images. The adversarial adaptation results in significant classification improvement compared with the baseline models under a wide range of experimental settings." @default.
- W2945334889 created "2019-05-29" @default.
- W2945334889 creator A5009060794 @default.
- W2945334889 creator A5015205742 @default.
- W2945334889 creator A5062117019 @default.
- W2945334889 creator A5077619274 @default.
- W2945334889 creator A5089373018 @default.
- W2945334889 date "2019-05-15" @default.
- W2945334889 modified "2023-10-16" @default.
- W2945334889 title "Unsupervised Domain Adaptation for Classification of Histopathology Whole-Slide Images" @default.
- W2945334889 cites W1545430154 @default.
- W2945334889 cites W1670560428 @default.
- W2945334889 cites W1731081199 @default.
- W2945334889 cites W1757407923 @default.
- W2945334889 cites W1888786797 @default.
- W2945334889 cites W1986750896 @default.
- W2945334889 cites W1993760967 @default.
- W2945334889 cites W2022495797 @default.
- W2945334889 cites W2057114171 @default.
- W2945334889 cites W2057448492 @default.
- W2945334889 cites W2060203799 @default.
- W2945334889 cites W2060324894 @default.
- W2945334889 cites W2069549207 @default.
- W2945334889 cites W2071957125 @default.
- W2945334889 cites W2076063813 @default.
- W2945334889 cites W2092170487 @default.
- W2945334889 cites W2096268042 @default.
- W2945334889 cites W2103243046 @default.
- W2945334889 cites W2111324774 @default.
- W2945334889 cites W2126846422 @default.
- W2945334889 cites W2129112648 @default.
- W2945334889 cites W2129894207 @default.
- W2945334889 cites W2132162500 @default.
- W2945334889 cites W2141690231 @default.
- W2945334889 cites W2145767061 @default.
- W2945334889 cites W2148615153 @default.
- W2945334889 cites W2156398782 @default.
- W2945334889 cites W2159551006 @default.
- W2945334889 cites W2160633263 @default.
- W2945334889 cites W2160738726 @default.
- W2945334889 cites W2226476423 @default.
- W2945334889 cites W2252728384 @default.
- W2945334889 cites W2264887978 @default.
- W2945334889 cites W2296431412 @default.
- W2945334889 cites W2302302587 @default.
- W2945334889 cites W2343160907 @default.
- W2945334889 cites W2401520370 @default.
- W2945334889 cites W2408733084 @default.
- W2945334889 cites W2579322062 @default.
- W2945334889 cites W2584009249 @default.
- W2945334889 cites W2592611445 @default.
- W2945334889 cites W2594258169 @default.
- W2945334889 cites W2599047111 @default.
- W2945334889 cites W2605370493 @default.
- W2945334889 cites W2605488490 @default.
- W2945334889 cites W2772926238 @default.
- W2945334889 cites W2886327600 @default.
- W2945334889 cites W2964090697 @default.
- W2945334889 cites W2964152645 @default.
- W2945334889 cites W2964285681 @default.
- W2945334889 cites W3098150009 @default.
- W2945334889 cites W3106307315 @default.
- W2945334889 doi "https://doi.org/10.3389/fbioe.2019.00102" @default.
- W2945334889 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6529804" @default.
- W2945334889 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31158269" @default.
- W2945334889 hasPublicationYear "2019" @default.
- W2945334889 type Work @default.
- W2945334889 sameAs 2945334889 @default.
- W2945334889 citedByCount "44" @default.
- W2945334889 countsByYear W29453348892019 @default.
- W2945334889 countsByYear W29453348892020 @default.
- W2945334889 countsByYear W29453348892021 @default.
- W2945334889 countsByYear W29453348892022 @default.
- W2945334889 countsByYear W29453348892023 @default.
- W2945334889 crossrefType "journal-article" @default.
- W2945334889 hasAuthorship W2945334889A5009060794 @default.
- W2945334889 hasAuthorship W2945334889A5015205742 @default.
- W2945334889 hasAuthorship W2945334889A5062117019 @default.
- W2945334889 hasAuthorship W2945334889A5077619274 @default.
- W2945334889 hasAuthorship W2945334889A5089373018 @default.
- W2945334889 hasBestOaLocation W29453348891 @default.
- W2945334889 hasConcept C115961682 @default.
- W2945334889 hasConcept C119857082 @default.
- W2945334889 hasConcept C136886441 @default.
- W2945334889 hasConcept C144024400 @default.
- W2945334889 hasConcept C150899416 @default.
- W2945334889 hasConcept C153180895 @default.
- W2945334889 hasConcept C154945302 @default.
- W2945334889 hasConcept C19165224 @default.
- W2945334889 hasConcept C2776135515 @default.
- W2945334889 hasConcept C2776434776 @default.
- W2945334889 hasConcept C41008148 @default.
- W2945334889 hasConcept C75294576 @default.
- W2945334889 hasConcept C81363708 @default.
- W2945334889 hasConcept C83665646 @default.
- W2945334889 hasConcept C95623464 @default.
- W2945334889 hasConcept C97931131 @default.
- W2945334889 hasConceptScore W2945334889C115961682 @default.
- W2945334889 hasConceptScore W2945334889C119857082 @default.
- W2945334889 hasConceptScore W2945334889C136886441 @default.