Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945335943> ?p ?o ?g. }
- W2945335943 endingPage "1593" @default.
- W2945335943 startingPage "1586" @default.
- W2945335943 abstract "Gas sensor arrays, also called electronic noses, use many chemically diverse materials to adsorb and subsequently identify gas species in complex mixture environments. Ideally these materials should have maximally complementary adsorption profiles to achieve the best sensing performance, but in practice they are selected by trial-and-error. Thus current electronic noses do not achieve optimal detection. In this work, we employ metal-organic frameworks (MOFs) as sensing materials and leverage a genetic algorithm to identify optimal combinations of them for detecting methane leaks in air. We build on our previously reported computational design methodology, which ranked MOF arrays by their Kullback-Liebler divergence (KLD) values for probabilistically describing the concentrations of each gas species in an unknown mixture. We ran the genetic algorithm to find optimal MOF arrays of various sizes when selecting from a library of 50 different MOF materials. The genetic algorithm was able to accurately predict the best arrays of any desired size when compared to brute-force screening. Thus, this search optimization can be integrated into the efficient design of MOF-based electronic noses." @default.
- W2945335943 created "2019-05-29" @default.
- W2945335943 creator A5019646299 @default.
- W2945335943 creator A5046343559 @default.
- W2945335943 date "2019-05-24" @default.
- W2945335943 modified "2023-09-29" @default.
- W2945335943 title "Intelligent Selection of Metal–Organic Framework Arrays for Methane Sensing via Genetic Algorithms" @default.
- W2945335943 cites W1586409345 @default.
- W2945335943 cites W1963883777 @default.
- W2945335943 cites W1965227345 @default.
- W2945335943 cites W1984981454 @default.
- W2945335943 cites W2002799357 @default.
- W2945335943 cites W2019476283 @default.
- W2945335943 cites W2036451392 @default.
- W2945335943 cites W2040147130 @default.
- W2945335943 cites W2043206028 @default.
- W2945335943 cites W2048015557 @default.
- W2945335943 cites W2052495404 @default.
- W2945335943 cites W2052874602 @default.
- W2945335943 cites W2055305228 @default.
- W2945335943 cites W2060315146 @default.
- W2945335943 cites W2063307600 @default.
- W2945335943 cites W2083348848 @default.
- W2945335943 cites W2084266203 @default.
- W2945335943 cites W2118112481 @default.
- W2945335943 cites W2118360225 @default.
- W2945335943 cites W2157013735 @default.
- W2945335943 cites W2160879548 @default.
- W2945335943 cites W2260512632 @default.
- W2945335943 cites W2324371313 @default.
- W2945335943 cites W2346338627 @default.
- W2945335943 cites W2383894479 @default.
- W2945335943 cites W2587471698 @default.
- W2945335943 cites W2612757883 @default.
- W2945335943 cites W2786243724 @default.
- W2945335943 cites W2797659989 @default.
- W2945335943 cites W2925338250 @default.
- W2945335943 cites W292851245 @default.
- W2945335943 cites W2950926753 @default.
- W2945335943 doi "https://doi.org/10.1021/acssensors.9b00268" @default.
- W2945335943 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31124354" @default.
- W2945335943 hasPublicationYear "2019" @default.
- W2945335943 type Work @default.
- W2945335943 sameAs 2945335943 @default.
- W2945335943 citedByCount "41" @default.
- W2945335943 countsByYear W29453359432019 @default.
- W2945335943 countsByYear W29453359432020 @default.
- W2945335943 countsByYear W29453359432021 @default.
- W2945335943 countsByYear W29453359432022 @default.
- W2945335943 countsByYear W29453359432023 @default.
- W2945335943 crossrefType "journal-article" @default.
- W2945335943 hasAuthorship W2945335943A5019646299 @default.
- W2945335943 hasAuthorship W2945335943A5046343559 @default.
- W2945335943 hasConcept C11413529 @default.
- W2945335943 hasConcept C119857082 @default.
- W2945335943 hasConcept C138885662 @default.
- W2945335943 hasConcept C150394285 @default.
- W2945335943 hasConcept C153083717 @default.
- W2945335943 hasConcept C154945302 @default.
- W2945335943 hasConcept C171250308 @default.
- W2945335943 hasConcept C178790620 @default.
- W2945335943 hasConcept C179366358 @default.
- W2945335943 hasConcept C185592680 @default.
- W2945335943 hasConcept C192562407 @default.
- W2945335943 hasConcept C207390915 @default.
- W2945335943 hasConcept C41008148 @default.
- W2945335943 hasConcept C41895202 @default.
- W2945335943 hasConcept C516920438 @default.
- W2945335943 hasConcept C81917197 @default.
- W2945335943 hasConcept C8880873 @default.
- W2945335943 hasConceptScore W2945335943C11413529 @default.
- W2945335943 hasConceptScore W2945335943C119857082 @default.
- W2945335943 hasConceptScore W2945335943C138885662 @default.
- W2945335943 hasConceptScore W2945335943C150394285 @default.
- W2945335943 hasConceptScore W2945335943C153083717 @default.
- W2945335943 hasConceptScore W2945335943C154945302 @default.
- W2945335943 hasConceptScore W2945335943C171250308 @default.
- W2945335943 hasConceptScore W2945335943C178790620 @default.
- W2945335943 hasConceptScore W2945335943C179366358 @default.
- W2945335943 hasConceptScore W2945335943C185592680 @default.
- W2945335943 hasConceptScore W2945335943C192562407 @default.
- W2945335943 hasConceptScore W2945335943C207390915 @default.
- W2945335943 hasConceptScore W2945335943C41008148 @default.
- W2945335943 hasConceptScore W2945335943C41895202 @default.
- W2945335943 hasConceptScore W2945335943C516920438 @default.
- W2945335943 hasConceptScore W2945335943C81917197 @default.
- W2945335943 hasConceptScore W2945335943C8880873 @default.
- W2945335943 hasFunder F4320306084 @default.
- W2945335943 hasFunder F4320332987 @default.
- W2945335943 hasIssue "6" @default.
- W2945335943 hasLocation W29453359431 @default.
- W2945335943 hasLocation W29453359432 @default.
- W2945335943 hasOpenAccess W2945335943 @default.
- W2945335943 hasPrimaryLocation W29453359431 @default.
- W2945335943 hasRelatedWork W1137379203 @default.
- W2945335943 hasRelatedWork W2006776390 @default.
- W2945335943 hasRelatedWork W2080083420 @default.
- W2945335943 hasRelatedWork W2899084033 @default.