Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945363772> ?p ?o ?g. }
- W2945363772 endingPage "262" @default.
- W2945363772 startingPage "247" @default.
- W2945363772 abstract "Background: In an epidemiological study, disease mapping models are commonly used to estimate the spatial (or temporal) patterns in disease risk and to identify high-risk clusters, allowing for health interventions and allocation of the resources. The present study proposes a hierarchical Bayesian modeling approach to simultaneously capture the over-dispersion due to the effect of varying population sizes across the districts (regions), and the spatial auto-correlation inherent in the childhood mortality at districts (state) level in Nigeria. Methods: This cross-sectional study was based on 31842 children data extracted from the 2013 Nigeria Demographic and Health Survey (DHS). Of these children, 2886 died before reaching the age of five years. A Standardized Mortality Ratio (SMR) was estimated for each district (state) and mapped to highlight the risk patterns and detect an unusual low (high) clusters relative risk of childhood mortality. Generalized Poisson regression models were formulated with random effects to estimate the mortality risk and then explored to investigate the relationship of under-five child mortality and the regional risk factors. The random effects are formulated to reflect the potential tendency of “neighbouring” regions to have similar risk patterns and the spatial heterogeneity effect was used to capture geographical inequalities in the mortality outcomes. The models were implemented using a full Bayesian framework. All model parameters were estimated in WinBUGS via Markov Chain Monte Carlos (MCMC) simulation techniques. Results: The results showed that of the economically deprived households, 2.088: 95% CI (1.088, 3.165) were significantly associated with childhood mortality, while unhygienic sanitation and lack of access to improved water sources were positively associated with child mortality, but not statistically significant at 5% probability level. The geographical variation of the under-five mortality prevalence was found to be attributed to 69% clustering and 31% was due to spatial heterogeneity factors. The predicted probability maps identified clusters of high risk mortality in the northern regions and low prevalence of concentrated mortality in the south-west regions of Nigeria. Conclusion: The results demonstrated the flexibility of the approach that explored the geographical variation in the potential risk factors of child mortality and that it provides a better understanding of the regional variations of mortality risks. Nonetheless, both representations can help to provide information for the initiation of public health interventions." @default.
- W2945363772 created "2019-05-29" @default.
- W2945363772 creator A5019124559 @default.
- W2945363772 creator A5061771474 @default.
- W2945363772 creator A5074998670 @default.
- W2945363772 date "2019-05-31" @default.
- W2945363772 modified "2023-10-10" @default.
- W2945363772 title "A Bayesian Hierarchical Analysis of Geographical Patterns for Child Mortality in Nigeria" @default.
- W2945363772 cites W1582941207 @default.
- W2945363772 cites W1589561466 @default.
- W2945363772 cites W1639814325 @default.
- W2945363772 cites W1876622349 @default.
- W2945363772 cites W1917581155 @default.
- W2945363772 cites W1973052158 @default.
- W2945363772 cites W1988897244 @default.
- W2945363772 cites W1990751990 @default.
- W2945363772 cites W1991227916 @default.
- W2945363772 cites W1995293606 @default.
- W2945363772 cites W2000297283 @default.
- W2945363772 cites W2000795003 @default.
- W2945363772 cites W2003778189 @default.
- W2945363772 cites W2004014822 @default.
- W2945363772 cites W2009068239 @default.
- W2945363772 cites W2012869617 @default.
- W2945363772 cites W2056139291 @default.
- W2945363772 cites W2059292762 @default.
- W2945363772 cites W2065761892 @default.
- W2945363772 cites W2073153798 @default.
- W2945363772 cites W2079316803 @default.
- W2945363772 cites W2083655985 @default.
- W2945363772 cites W2085524726 @default.
- W2945363772 cites W2087327455 @default.
- W2945363772 cites W2096761830 @default.
- W2945363772 cites W2098950846 @default.
- W2945363772 cites W2101169596 @default.
- W2945363772 cites W2102907176 @default.
- W2945363772 cites W2108668442 @default.
- W2945363772 cites W2110052313 @default.
- W2945363772 cites W2120476202 @default.
- W2945363772 cites W2122495646 @default.
- W2945363772 cites W2134017609 @default.
- W2945363772 cites W2137084927 @default.
- W2945363772 cites W2144848103 @default.
- W2945363772 cites W2151055577 @default.
- W2945363772 cites W2159796925 @default.
- W2945363772 cites W2162334426 @default.
- W2945363772 cites W2169242337 @default.
- W2945363772 cites W2170712385 @default.
- W2945363772 cites W2184713171 @default.
- W2945363772 cites W2298559406 @default.
- W2945363772 cites W2479363696 @default.
- W2945363772 cites W2482566988 @default.
- W2945363772 cites W2914156828 @default.
- W2945363772 cites W4210847921 @default.
- W2945363772 cites W4248009905 @default.
- W2945363772 doi "https://doi.org/10.2174/1874944501912010247" @default.
- W2945363772 hasPublicationYear "2019" @default.
- W2945363772 type Work @default.
- W2945363772 sameAs 2945363772 @default.
- W2945363772 citedByCount "2" @default.
- W2945363772 countsByYear W29453637722020 @default.
- W2945363772 countsByYear W29453637722022 @default.
- W2945363772 crossrefType "journal-article" @default.
- W2945363772 hasAuthorship W2945363772A5019124559 @default.
- W2945363772 hasAuthorship W2945363772A5061771474 @default.
- W2945363772 hasAuthorship W2945363772A5074998670 @default.
- W2945363772 hasBestOaLocation W29453637721 @default.
- W2945363772 hasConcept C100906024 @default.
- W2945363772 hasConcept C105795698 @default.
- W2945363772 hasConcept C107130276 @default.
- W2945363772 hasConcept C107673813 @default.
- W2945363772 hasConcept C111350023 @default.
- W2945363772 hasConcept C126322002 @default.
- W2945363772 hasConcept C144024400 @default.
- W2945363772 hasConcept C149923435 @default.
- W2945363772 hasConcept C168743327 @default.
- W2945363772 hasConcept C205649164 @default.
- W2945363772 hasConcept C2908647359 @default.
- W2945363772 hasConcept C33923547 @default.
- W2945363772 hasConcept C44249647 @default.
- W2945363772 hasConcept C46299933 @default.
- W2945363772 hasConcept C53059260 @default.
- W2945363772 hasConcept C71924100 @default.
- W2945363772 hasConcept C73269764 @default.
- W2945363772 hasConcept C82789193 @default.
- W2945363772 hasConcept C95190672 @default.
- W2945363772 hasConcept C99454951 @default.
- W2945363772 hasConceptScore W2945363772C100906024 @default.
- W2945363772 hasConceptScore W2945363772C105795698 @default.
- W2945363772 hasConceptScore W2945363772C107130276 @default.
- W2945363772 hasConceptScore W2945363772C107673813 @default.
- W2945363772 hasConceptScore W2945363772C111350023 @default.
- W2945363772 hasConceptScore W2945363772C126322002 @default.
- W2945363772 hasConceptScore W2945363772C144024400 @default.
- W2945363772 hasConceptScore W2945363772C149923435 @default.
- W2945363772 hasConceptScore W2945363772C168743327 @default.
- W2945363772 hasConceptScore W2945363772C205649164 @default.
- W2945363772 hasConceptScore W2945363772C2908647359 @default.