Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945374171> ?p ?o ?g. }
- W2945374171 endingPage "39" @default.
- W2945374171 startingPage "29" @default.
- W2945374171 abstract "While laboratory methods of elemental analysis of soil nutrients are used frequently to support soil studies, the implementation of more portable and cost-efficient methods lingers behind. The portable (handheld) X-ray fluorescence spectrometer (XRF) is one such tool enabling onsite elemental analysis in a straightforward manner. However, in soil studies the use of XRF often remains cumbersome, following the poor performance of the method for low-Z elemental analysis and the complex nature of the soil matrix, introducing background noise. Here, we therefore evaluate how the potential use of a portable XRF for predicting potassium (K), phosphorus (P), magnesium (Mg) and calcium (Ca) can be improved through the analysis of XRF spectral data with the Random Forest (RF) machine learning method. A total of 105 soil samples from a wide range of soils collected from 10 different countries (D.R. Congo, Belgium, Ivory Coast, Italy, The Netherlands, Saudi-Arabia, South Africa, Spain, Switzerland, and Zimbabwe) were scanned using an Oxford XMET8000 XRF spectrometer (Oxford Instruments, UK). Spectral data of the calibration set (n = 74) were pulled in one matrix alongside measured elemental concentrations and subjected to RF analysis. Resulting models were validated using an independent validation set (n = 31). The best RF prediction result was obtained for K followed successively by Ca, Mg and P with coefficient of determination (R2) values of 0.83, 0.76, 0.69, and 0.47, and root mean squared error of prediction (RMSEP) of 2283.8, 6818.7, 1511.8, and 538.08 mg kg−1, respectively. The RF modelling procedure provided improved prediction performance compared to the calibration models provided by the manufacturer (R2 = 0.65, 0.75, 0.65, and 0.22, for K, Ca, Mg and P, respectively). Our results suggest that portable XRF instruments coupled with spectral data analysis by RF allows for rapid and low-cost analysis of soil K and Ca with remarkable accuracy. Still, the lower measurement accuracy for P and Mg suggests further work is needed to test whether the prediction can be improved by better calibration models, and how such approaches can help overcoming instrumental limitations." @default.
- W2945374171 created "2019-05-29" @default.
- W2945374171 creator A5007089168 @default.
- W2945374171 creator A5010243386 @default.
- W2945374171 creator A5024502996 @default.
- W2945374171 creator A5033227035 @default.
- W2945374171 creator A5036643116 @default.
- W2945374171 creator A5038175498 @default.
- W2945374171 creator A5050524960 @default.
- W2945374171 creator A5089753073 @default.
- W2945374171 date "2019-09-01" @default.
- W2945374171 modified "2023-10-16" @default.
- W2945374171 title "Can spectral analyses improve measurement of key soil fertility parameters with X-ray fluorescence spectrometry?" @default.
- W2945374171 cites W1592341820 @default.
- W2945374171 cites W1846532749 @default.
- W2945374171 cites W186329053 @default.
- W2945374171 cites W1980571077 @default.
- W2945374171 cites W1984068025 @default.
- W2945374171 cites W1984321041 @default.
- W2945374171 cites W1986948870 @default.
- W2945374171 cites W1988195734 @default.
- W2945374171 cites W2010769501 @default.
- W2945374171 cites W2025857348 @default.
- W2945374171 cites W2046496352 @default.
- W2945374171 cites W2053181689 @default.
- W2945374171 cites W2061626687 @default.
- W2945374171 cites W2073858026 @default.
- W2945374171 cites W2086394693 @default.
- W2945374171 cites W2090507729 @default.
- W2945374171 cites W2091906246 @default.
- W2945374171 cites W2093079307 @default.
- W2945374171 cites W2101234640 @default.
- W2945374171 cites W2101758912 @default.
- W2945374171 cites W2109606373 @default.
- W2945374171 cites W2113242816 @default.
- W2945374171 cites W2116828510 @default.
- W2945374171 cites W2131822674 @default.
- W2945374171 cites W2139086914 @default.
- W2945374171 cites W2161548576 @default.
- W2945374171 cites W2165822104 @default.
- W2945374171 cites W2425993113 @default.
- W2945374171 cites W2766300505 @default.
- W2945374171 cites W2767663224 @default.
- W2945374171 cites W2883598133 @default.
- W2945374171 cites W2911964244 @default.
- W2945374171 cites W3100147273 @default.
- W2945374171 cites W3102708157 @default.
- W2945374171 doi "https://doi.org/10.1016/j.geoderma.2019.05.002" @default.
- W2945374171 hasPublicationYear "2019" @default.
- W2945374171 type Work @default.
- W2945374171 sameAs 2945374171 @default.
- W2945374171 citedByCount "39" @default.
- W2945374171 countsByYear W29453741712019 @default.
- W2945374171 countsByYear W29453741712020 @default.
- W2945374171 countsByYear W29453741712021 @default.
- W2945374171 countsByYear W29453741712022 @default.
- W2945374171 countsByYear W29453741712023 @default.
- W2945374171 crossrefType "journal-article" @default.
- W2945374171 hasAuthorship W2945374171A5007089168 @default.
- W2945374171 hasAuthorship W2945374171A5010243386 @default.
- W2945374171 hasAuthorship W2945374171A5024502996 @default.
- W2945374171 hasAuthorship W2945374171A5033227035 @default.
- W2945374171 hasAuthorship W2945374171A5036643116 @default.
- W2945374171 hasAuthorship W2945374171A5038175498 @default.
- W2945374171 hasAuthorship W2945374171A5050524960 @default.
- W2945374171 hasAuthorship W2945374171A5089753073 @default.
- W2945374171 hasConcept C107872376 @default.
- W2945374171 hasConcept C113196181 @default.
- W2945374171 hasConcept C120665830 @default.
- W2945374171 hasConcept C121332964 @default.
- W2945374171 hasConcept C127313418 @default.
- W2945374171 hasConcept C144024400 @default.
- W2945374171 hasConcept C149923435 @default.
- W2945374171 hasConcept C162170617 @default.
- W2945374171 hasConcept C162356407 @default.
- W2945374171 hasConcept C185592680 @default.
- W2945374171 hasConcept C26517878 @default.
- W2945374171 hasConcept C2779328170 @default.
- W2945374171 hasConcept C2908647359 @default.
- W2945374171 hasConcept C38652104 @default.
- W2945374171 hasConcept C39432304 @default.
- W2945374171 hasConcept C41008148 @default.
- W2945374171 hasConcept C43617362 @default.
- W2945374171 hasConcept C518429986 @default.
- W2945374171 hasConcept C62649853 @default.
- W2945374171 hasConcept C91881484 @default.
- W2945374171 hasConceptScore W2945374171C107872376 @default.
- W2945374171 hasConceptScore W2945374171C113196181 @default.
- W2945374171 hasConceptScore W2945374171C120665830 @default.
- W2945374171 hasConceptScore W2945374171C121332964 @default.
- W2945374171 hasConceptScore W2945374171C127313418 @default.
- W2945374171 hasConceptScore W2945374171C144024400 @default.
- W2945374171 hasConceptScore W2945374171C149923435 @default.
- W2945374171 hasConceptScore W2945374171C162170617 @default.
- W2945374171 hasConceptScore W2945374171C162356407 @default.
- W2945374171 hasConceptScore W2945374171C185592680 @default.
- W2945374171 hasConceptScore W2945374171C26517878 @default.
- W2945374171 hasConceptScore W2945374171C2779328170 @default.