Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945403926> ?p ?o ?g. }
- W2945403926 endingPage "90" @default.
- W2945403926 startingPage "62" @default.
- W2945403926 abstract "Many-objective optimization problems abbreviated as MaOPs with more than three objectives have attracted increasing interests due to their widely existing in a variety of real-world applications. This paper presents a novel many-objective population extremal optimization called MaOPEO-HM algorithm for MaOPs by introducing a reference set based many-objective optimization mechanism into a recently developed population extremal optimization framework and designing an adaptive hybrid mutation operation for updating the population. Despite of the successful applications of extremal optimization in different kinds of numerical and engineering optimization problems, it has never been explored to the many-objective optimization domain so far. Because most of the existing many-objective evolutionary algorithms are usually guided by a single mutation operation, which has insufficient ability to exploit the search space of MaOPs and will get stuck at any local efficient front, it is the first attempt to design a novel hybrid mutation scheme in MaOPEO-HM algorithm by combining the advantages of polynomial mutation operator and multi-non-uniform mutation operator effectively. The experiment results for DTLZ test problems with 3, 5, 8, 10, and 15 objectives and WFG test problems with 3, 5, and 8 objectives have demonstrated the superiority of the proposed MaOPEO-HM to five state-of-the-art decomposition-based many-objective evolutionary algorithms including NSGA-III, RVEA, EFR-RR, θ-DEA, and MOEA/DD and two non-decomposition-based algorithms including GrEA and Two_Arch2. Furthermore, the great ability of the designed adaptive hybrid mutation operation incorporated into many-objective population extremal optimization (MaOPEO) has also been illustrated by comparing MaOPEO-HM and two MaOPEO algorithms only based on traditional multi-non-uniform mutation or polynomial mutation for DTLZ problems." @default.
- W2945403926 created "2019-05-29" @default.
- W2945403926 creator A5046775963 @default.
- W2945403926 creator A5072829479 @default.
- W2945403926 creator A5079910881 @default.
- W2945403926 date "2019-09-01" @default.
- W2945403926 modified "2023-10-15" @default.
- W2945403926 title "A many-objective population extremal optimization algorithm with an adaptive hybrid mutation operation" @default.
- W2945403926 cites W1493761729 @default.
- W2945403926 cites W1662894842 @default.
- W2945403926 cites W1961948334 @default.
- W2945403926 cites W1966450918 @default.
- W2945403926 cites W1993122005 @default.
- W2945403926 cites W2008615160 @default.
- W2945403926 cites W2019437468 @default.
- W2945403926 cites W2022485595 @default.
- W2945403926 cites W2024008934 @default.
- W2945403926 cites W2033746600 @default.
- W2945403926 cites W2035529536 @default.
- W2945403926 cites W2039201796 @default.
- W2945403926 cites W2040622444 @default.
- W2945403926 cites W2067544246 @default.
- W2945403926 cites W2071694551 @default.
- W2945403926 cites W2081873429 @default.
- W2945403926 cites W2089556013 @default.
- W2945403926 cites W2108968575 @default.
- W2945403926 cites W2112912151 @default.
- W2945403926 cites W2128357515 @default.
- W2945403926 cites W2143185749 @default.
- W2945403926 cites W2143381319 @default.
- W2945403926 cites W2146713522 @default.
- W2945403926 cites W2150046657 @default.
- W2945403926 cites W2153654820 @default.
- W2945403926 cites W2326149522 @default.
- W2945403926 cites W2338198502 @default.
- W2945403926 cites W2343601797 @default.
- W2945403926 cites W2404080558 @default.
- W2945403926 cites W2414607481 @default.
- W2945403926 cites W2423229215 @default.
- W2945403926 cites W2512033555 @default.
- W2945403926 cites W2758378811 @default.
- W2945403926 cites W2762482744 @default.
- W2945403926 cites W2764251381 @default.
- W2945403926 cites W2770458072 @default.
- W2945403926 cites W2911539482 @default.
- W2945403926 cites W2963185242 @default.
- W2945403926 cites W2963332217 @default.
- W2945403926 cites W4239738125 @default.
- W2945403926 cites W908018526 @default.
- W2945403926 doi "https://doi.org/10.1016/j.ins.2019.05.048" @default.
- W2945403926 hasPublicationYear "2019" @default.
- W2945403926 type Work @default.
- W2945403926 sameAs 2945403926 @default.
- W2945403926 citedByCount "32" @default.
- W2945403926 countsByYear W29454039262020 @default.
- W2945403926 countsByYear W29454039262021 @default.
- W2945403926 countsByYear W29454039262022 @default.
- W2945403926 countsByYear W29454039262023 @default.
- W2945403926 crossrefType "journal-article" @default.
- W2945403926 hasAuthorship W2945403926A5046775963 @default.
- W2945403926 hasAuthorship W2945403926A5072829479 @default.
- W2945403926 hasAuthorship W2945403926A5079910881 @default.
- W2945403926 hasConcept C104317684 @default.
- W2945403926 hasConcept C122357587 @default.
- W2945403926 hasConcept C126255220 @default.
- W2945403926 hasConcept C137836250 @default.
- W2945403926 hasConcept C144024400 @default.
- W2945403926 hasConcept C149923435 @default.
- W2945403926 hasConcept C150185637 @default.
- W2945403926 hasConcept C159149176 @default.
- W2945403926 hasConcept C177264268 @default.
- W2945403926 hasConcept C185592680 @default.
- W2945403926 hasConcept C192122231 @default.
- W2945403926 hasConcept C199360897 @default.
- W2945403926 hasConcept C2908647359 @default.
- W2945403926 hasConcept C33923547 @default.
- W2945403926 hasConcept C41008148 @default.
- W2945403926 hasConcept C501734568 @default.
- W2945403926 hasConcept C55493867 @default.
- W2945403926 hasConcept C68781425 @default.
- W2945403926 hasConcept C8880873 @default.
- W2945403926 hasConceptScore W2945403926C104317684 @default.
- W2945403926 hasConceptScore W2945403926C122357587 @default.
- W2945403926 hasConceptScore W2945403926C126255220 @default.
- W2945403926 hasConceptScore W2945403926C137836250 @default.
- W2945403926 hasConceptScore W2945403926C144024400 @default.
- W2945403926 hasConceptScore W2945403926C149923435 @default.
- W2945403926 hasConceptScore W2945403926C150185637 @default.
- W2945403926 hasConceptScore W2945403926C159149176 @default.
- W2945403926 hasConceptScore W2945403926C177264268 @default.
- W2945403926 hasConceptScore W2945403926C185592680 @default.
- W2945403926 hasConceptScore W2945403926C192122231 @default.
- W2945403926 hasConceptScore W2945403926C199360897 @default.
- W2945403926 hasConceptScore W2945403926C2908647359 @default.
- W2945403926 hasConceptScore W2945403926C33923547 @default.
- W2945403926 hasConceptScore W2945403926C41008148 @default.
- W2945403926 hasConceptScore W2945403926C501734568 @default.
- W2945403926 hasConceptScore W2945403926C55493867 @default.