Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945431341> ?p ?o ?g. }
- W2945431341 endingPage "1859" @default.
- W2945431341 startingPage "1859" @default.
- W2945431341 abstract "This paper presents a review of 71 research papers related to a distance-based clustering (DBC) technique for efficiently assessing reservoir uncertainty. The key to DBC is to select a few models that can represent hundreds of possible reservoir models. DBC is defined as a combination of four technical processes: distance definition, distance matrix construction, dimensional reduction, and clustering. In this paper, we review the algorithms employed in each step. For distance calculation, Minkowski distance is recommended with even order due to sign problem. In the case of clustering, K-means algorithm has been commonly used. DBC has been applied to various reservoir types from channel to unconventional reservoirs. DBC is effective for unconventional resources and enhanced oil recovery projects that have a significant advantage of reducing the number of reservoir simulations. Recently, DBC studies have been performed with deep learning algorithms for feature extraction to define a distance and for effective clustering." @default.
- W2945431341 created "2019-05-29" @default.
- W2945431341 creator A5008657617 @default.
- W2945431341 creator A5032826689 @default.
- W2945431341 creator A5039786986 @default.
- W2945431341 creator A5088772395 @default.
- W2945431341 creator A5088885260 @default.
- W2945431341 date "2019-05-15" @default.
- W2945431341 modified "2023-10-10" @default.
- W2945431341 title "Efficient Assessment of Reservoir Uncertainty Using Distance-Based Clustering: A Review" @default.
- W2945431341 cites W1528645104 @default.
- W2945431341 cites W1968802878 @default.
- W2945431341 cites W1975152892 @default.
- W2945431341 cites W1979406450 @default.
- W2945431341 cites W1992419399 @default.
- W2945431341 cites W1992548144 @default.
- W2945431341 cites W1995984966 @default.
- W2945431341 cites W2008933362 @default.
- W2945431341 cites W2018173843 @default.
- W2945431341 cites W2022658703 @default.
- W2945431341 cites W2038648432 @default.
- W2945431341 cites W2077908289 @default.
- W2945431341 cites W2080813278 @default.
- W2945431341 cites W2085208269 @default.
- W2945431341 cites W2090514254 @default.
- W2945431341 cites W2092048099 @default.
- W2945431341 cites W2095454627 @default.
- W2945431341 cites W2121947440 @default.
- W2945431341 cites W2123757785 @default.
- W2945431341 cites W2128483847 @default.
- W2945431341 cites W2148227891 @default.
- W2945431341 cites W2247057815 @default.
- W2945431341 cites W2267990845 @default.
- W2945431341 cites W2271500127 @default.
- W2945431341 cites W2299848553 @default.
- W2945431341 cites W2311498046 @default.
- W2945431341 cites W2320358020 @default.
- W2945431341 cites W2337332151 @default.
- W2945431341 cites W2408587800 @default.
- W2945431341 cites W2509862167 @default.
- W2945431341 cites W2510484771 @default.
- W2945431341 cites W2539842995 @default.
- W2945431341 cites W2552739225 @default.
- W2945431341 cites W2559345005 @default.
- W2945431341 cites W2580205802 @default.
- W2945431341 cites W2593399833 @default.
- W2945431341 cites W2604821311 @default.
- W2945431341 cites W2605354090 @default.
- W2945431341 cites W2606202050 @default.
- W2945431341 cites W2637671772 @default.
- W2945431341 cites W2741547342 @default.
- W2945431341 cites W2757775752 @default.
- W2945431341 cites W2787262434 @default.
- W2945431341 cites W2789987714 @default.
- W2945431341 cites W2793323693 @default.
- W2945431341 cites W2795075952 @default.
- W2945431341 cites W2801312005 @default.
- W2945431341 cites W2807418478 @default.
- W2945431341 cites W2884366190 @default.
- W2945431341 cites W2884613861 @default.
- W2945431341 cites W2889287282 @default.
- W2945431341 cites W2891687895 @default.
- W2945431341 cites W2900334021 @default.
- W2945431341 cites W2937703642 @default.
- W2945431341 cites W944997519 @default.
- W2945431341 doi "https://doi.org/10.3390/en12101859" @default.
- W2945431341 hasPublicationYear "2019" @default.
- W2945431341 type Work @default.
- W2945431341 sameAs 2945431341 @default.
- W2945431341 citedByCount "16" @default.
- W2945431341 countsByYear W29454313412020 @default.
- W2945431341 countsByYear W29454313412021 @default.
- W2945431341 countsByYear W29454313412022 @default.
- W2945431341 countsByYear W29454313412023 @default.
- W2945431341 crossrefType "journal-article" @default.
- W2945431341 hasAuthorship W2945431341A5008657617 @default.
- W2945431341 hasAuthorship W2945431341A5032826689 @default.
- W2945431341 hasAuthorship W2945431341A5039786986 @default.
- W2945431341 hasAuthorship W2945431341A5088772395 @default.
- W2945431341 hasAuthorship W2945431341A5088885260 @default.
- W2945431341 hasBestOaLocation W29454313411 @default.
- W2945431341 hasConcept C11413529 @default.
- W2945431341 hasConcept C124101348 @default.
- W2945431341 hasConcept C154945302 @default.
- W2945431341 hasConcept C175291020 @default.
- W2945431341 hasConcept C193523891 @default.
- W2945431341 hasConcept C199360897 @default.
- W2945431341 hasConcept C41008148 @default.
- W2945431341 hasConcept C73555534 @default.
- W2945431341 hasConceptScore W2945431341C11413529 @default.
- W2945431341 hasConceptScore W2945431341C124101348 @default.
- W2945431341 hasConceptScore W2945431341C154945302 @default.
- W2945431341 hasConceptScore W2945431341C175291020 @default.
- W2945431341 hasConceptScore W2945431341C193523891 @default.
- W2945431341 hasConceptScore W2945431341C199360897 @default.
- W2945431341 hasConceptScore W2945431341C41008148 @default.
- W2945431341 hasConceptScore W2945431341C73555534 @default.
- W2945431341 hasFunder F4320322097 @default.