Matches in SemOpenAlex for { <https://semopenalex.org/work/W2945443120> ?p ?o ?g. }
- W2945443120 endingPage "1822" @default.
- W2945443120 startingPage "1822" @default.
- W2945443120 abstract "It is of great significance for wind power plant to construct an accurate multi-step wind speed prediction model, especially considering its operations and grid integration. By integrating with a data pre-processing measure, a parameter optimization algorithm and error correction strategy, a novel forecasting method for multi-step wind speed in short period is put forward in this article. In the suggested measure, the EEMD (Ensemble Empirical Mode Decomposition) is applied to extract a series of IMFs (intrinsic mode functions) from the initial wind data sequence; the LSTM (Long Short Term Memory) measure is executed as the major forecasting method for each IMF; the GRNN (general regression neural network) is executed as the secondary forecasting method to forecast error sequences for each IMF; and the BSO (Brain Storm Optimization) is employed to optimize the parameter for GRNN during the training process. To verify the validity of the suggested EEMD-LSTM-GRNN-BSO model, eight models were applied on three different wind speed sequences. The calculation outcomes reveal that: (1) the EEMD is able to boost the wind speed prediction capacity and robustness of the LSTM approach effectively; (2) the BSO based parameter optimization method is effective in finding the optimal parameter for GRNN and improving the forecasting performance for the EEMD-LSTM-GRNN model; (3) the error correction method based on the optimized GRNN promotes the forecasting accuracy of the EEMD-LSTM model significantly; and (4) compared with all models involved, the proposed EEMD-LSTM-GRNN-BSO model is proved to have the best performance in predicting the short-term wind speed sequence." @default.
- W2945443120 created "2019-05-29" @default.
- W2945443120 creator A5007178174 @default.
- W2945443120 creator A5044522718 @default.
- W2945443120 creator A5048369492 @default.
- W2945443120 creator A5084111615 @default.
- W2945443120 date "2019-05-14" @default.
- W2945443120 modified "2023-10-16" @default.
- W2945443120 title "Multi-Step Wind Speed Forecasting Based On Ensemble Empirical Mode Decomposition, Long Short Term Memory Network and Error Correction Strategy" @default.
- W2945443120 cites W1185746543 @default.
- W2945443120 cites W1995140642 @default.
- W2945443120 cites W1998469123 @default.
- W2945443120 cites W2000878957 @default.
- W2945443120 cites W2011630059 @default.
- W2945443120 cites W2016752668 @default.
- W2945443120 cites W2024692966 @default.
- W2945443120 cites W2029956212 @default.
- W2945443120 cites W2039306928 @default.
- W2945443120 cites W2044735270 @default.
- W2945443120 cites W2058504886 @default.
- W2945443120 cites W2058922249 @default.
- W2945443120 cites W2064675550 @default.
- W2945443120 cites W2067656095 @default.
- W2945443120 cites W2069854832 @default.
- W2945443120 cites W2079735306 @default.
- W2945443120 cites W2080267209 @default.
- W2945443120 cites W2084281621 @default.
- W2945443120 cites W2120390927 @default.
- W2945443120 cites W2142809749 @default.
- W2945443120 cites W2149723649 @default.
- W2945443120 cites W2340896543 @default.
- W2945443120 cites W2345208410 @default.
- W2945443120 cites W2468900667 @default.
- W2945443120 cites W2493711625 @default.
- W2945443120 cites W2548693665 @default.
- W2945443120 cites W2560370080 @default.
- W2945443120 cites W2604864721 @default.
- W2945443120 cites W2611034349 @default.
- W2945443120 cites W2611273431 @default.
- W2945443120 cites W2612447878 @default.
- W2945443120 cites W2762198305 @default.
- W2945443120 cites W2766748528 @default.
- W2945443120 cites W2783204403 @default.
- W2945443120 cites W588468042 @default.
- W2945443120 doi "https://doi.org/10.3390/en12101822" @default.
- W2945443120 hasPublicationYear "2019" @default.
- W2945443120 type Work @default.
- W2945443120 sameAs 2945443120 @default.
- W2945443120 citedByCount "27" @default.
- W2945443120 countsByYear W29454431202019 @default.
- W2945443120 countsByYear W29454431202020 @default.
- W2945443120 countsByYear W29454431202021 @default.
- W2945443120 countsByYear W29454431202022 @default.
- W2945443120 countsByYear W29454431202023 @default.
- W2945443120 crossrefType "journal-article" @default.
- W2945443120 hasAuthorship W2945443120A5007178174 @default.
- W2945443120 hasAuthorship W2945443120A5044522718 @default.
- W2945443120 hasAuthorship W2945443120A5048369492 @default.
- W2945443120 hasAuthorship W2945443120A5084111615 @default.
- W2945443120 hasBestOaLocation W29454431201 @default.
- W2945443120 hasConcept C104317684 @default.
- W2945443120 hasConcept C105795698 @default.
- W2945443120 hasConcept C106131492 @default.
- W2945443120 hasConcept C111919701 @default.
- W2945443120 hasConcept C119599485 @default.
- W2945443120 hasConcept C121332964 @default.
- W2945443120 hasConcept C127413603 @default.
- W2945443120 hasConcept C139945424 @default.
- W2945443120 hasConcept C153180895 @default.
- W2945443120 hasConcept C153294291 @default.
- W2945443120 hasConcept C154945302 @default.
- W2945443120 hasConcept C161067210 @default.
- W2945443120 hasConcept C163258240 @default.
- W2945443120 hasConcept C185592680 @default.
- W2945443120 hasConcept C25570617 @default.
- W2945443120 hasConcept C2781084341 @default.
- W2945443120 hasConcept C31972630 @default.
- W2945443120 hasConcept C33923547 @default.
- W2945443120 hasConcept C41008148 @default.
- W2945443120 hasConcept C48677424 @default.
- W2945443120 hasConcept C50644808 @default.
- W2945443120 hasConcept C55493867 @default.
- W2945443120 hasConcept C62520636 @default.
- W2945443120 hasConcept C63479239 @default.
- W2945443120 hasConcept C78600449 @default.
- W2945443120 hasConcept C89227174 @default.
- W2945443120 hasConceptScore W2945443120C104317684 @default.
- W2945443120 hasConceptScore W2945443120C105795698 @default.
- W2945443120 hasConceptScore W2945443120C106131492 @default.
- W2945443120 hasConceptScore W2945443120C111919701 @default.
- W2945443120 hasConceptScore W2945443120C119599485 @default.
- W2945443120 hasConceptScore W2945443120C121332964 @default.
- W2945443120 hasConceptScore W2945443120C127413603 @default.
- W2945443120 hasConceptScore W2945443120C139945424 @default.
- W2945443120 hasConceptScore W2945443120C153180895 @default.
- W2945443120 hasConceptScore W2945443120C153294291 @default.
- W2945443120 hasConceptScore W2945443120C154945302 @default.
- W2945443120 hasConceptScore W2945443120C161067210 @default.